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Testing Goodness-of-Fit for No Effect Models?
Sungho Lee?), Jongtae Kim3 and GyoungAe Moon4

Abstract

This paper investigates the problem of goodness of fit tests for no effect model.
The proposed test statistic Z,, is obtained by multiplying constant on the model

free curve estimation techniques. The small and large sample properties of Z,,, are

investigated and the good results of power studies for the proposed test are
illustrated.

1. Introduction

Assume that responses v, ¥, ..., ¥, are obtained from the model
yvi= p+ fx) + e  i=1,2,..,n, (1.1
where the x; are design points of a predictor value x, g is an unknown constant, f is some
unknown function and the e, are independent and identically distributed (i.i.d.) normal random

errors with zero mean and variance o 2 Under this model we wish to test the hypothesis

that x has no influence on the response, that is, we want to test for Hy : f = 0.

Let L,[0,1]1 be the function space consisting of all functions f that satisfy

H f” 2 — f;fz(x)dx( oo and folf(X)dx = 0 And let {goj}jo

-1 be a complete

orthonormal sequence (CONS) for L,[0,1] with norm ||-1{l. Assume that f e L,[0,1],
1

and define its Fourier coefficients corresponding to ¢; by a; = fo f(x) ¢{x)dx . Then the

unknown function f can be expressed as a Fourler series expansion

f) = Zoaem , x=l0, 1.

One of strategies for finding 7 relies on a sequence of numbers to optimize the estimator.

Specifically, each Fourier cosine series coefficient, 2 ins 7 = 1,2, .., of the expansion 7
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is multiplied by a real number &; called multiplier which decreases as j increases so that

coefficients of 7 can be gradually tapered to zero instead of being sharply truncated, and
given by

Flx) = jz::lbj a;npi(x) , x=[0,1].

In this paper, we will propose the test based on a functional of each sample Fourier

coefficient multiplied by a real number gradually tapered to zero in the expansion of £.

,,2' Review of Tests For No Effect

von Neumann(1941) suggested a test statistic based on the sum of squares of first
differences of the data to be reciprocal of

L B ei-»?

n—l :le (yi+1 - Yi) 2

which rejects the null model for large values of (2.1). Recently, Munson and Jernigan(1989)

Ty = (2.1)

have developed a modified version of the von Neumann(1941) ratio statistic, which is
equivalent to the Durbin and Waston(1971) statistic when the regression is constant. Eubank
and Hart(1993) showed that it is asymptotically equivalent to the von Neumann(1941) ratio
statistic, which is given by

~ 2
_ 2l
Ty = FI—*—%‘-Z’—, (2.2)
where the Fourier cosine series coefficient is
. V3 .
Xjn = o Zl y; cos(fmx;), (2.3)
and
~2 1 STy
o - z(n__l) :le (yz yt+1) » (24)

?)‘2 is the consistent estimator of o2 proposed by Rice(1984) based on successive
differences ¥; — ¥iy1 .

Buckley(1991) sought to detect any smooth variation in function f in viewpoint of Bayesian,
not to specify a parametric alternatives, assuming that f = hin)g, where h(n) allows an
arbitrary departure from the null

Given a particular prior distribution (g(x;),g(xy), ...,&(x,))" a statistic is given

proportional to
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Ty = —3 3 [’;‘(yi_})zl

n° =1 5 (25)

with /&2 used for (2.5), where —3—1 = —’11 21 y; is given for testing H;. These kinds of
=

statistics have been considered by Nair(1986) and Hirotsu(1986) against ordered alternatives.
Eubank and Hart(1993) showed that 7z can be represented as follows :

a2
Ty = (E‘——‘Li—)/ Ch (2.6)

=1 75
with 7, = { 2n sin(-L%) , by using the fact by Nair(1986) and the Fourler cosine series
J 2n

coefficient @ ;, used in (2.3).

As noted by Eubank and Hart(1993), Ty and Ty have some problems detecting
alternatives with lower or higher frequency. In order to overcome difficulties arising when

Tg and Ty are used as test statistics, Eubank and Hart(1993) have proposed some tests.

First, they considered a test derived by using a standard nonparametric estimator of

£, F.(h = ——\/\% ng 2 incos (jmx), where 1<m<wn is an integer. Then, the test

statistic is
~ 2
a ja
T, = 25—, 2.7)
=1 Il
and the null hypothesis is rejected for large value of (2.7).
Although, T, = T for m = n — 1, m is often expected to be much smaller than

. . . ~ 2 .
n . The statistic T,, assigns weights 0 or 1 to the @« ";, according to whether or not m

) . . ~ 2
is larger than j, while Tp down-weights a " ;, by —71,—
J

3. The Proposed Test

We now propose two new tests for testing Hj: f = 0 under the model
_ 2i — 1 L )
vi= pu+ hin)g 7 + & 1 1,2, ..., n, (3.1
1
where g is an unknown parameter, g is some unknown function satisfying fo glxde = 0

and % (n) is some function of the sample size that satisfies k(%) — 0 as » — o and

the ¢; are independent and identically distributed normal random errors with mean zero and
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variance ¢ 2. If the null hypothesis is true, the residuals e; = y; — 5} from fitting the null
model (3.1) with g = 0 should have no pattern as a function of x. Thus, given some

nonparametric regression fit g to the residuals, we can base a test on quadratic functional

form of g, for example, 21 §2(x,-) . The test statistics derived arise from the above
=

perspective.
For some integer 1 < m < n, the Fourier cosine series estimator of g with m terms to

the residuals e; can be considered as follows :

2(x) = V2 Z:lbj aj,cos (jrx), (3.2)
with the multiplier sequence
=] — —d
b, 1 it 1 (3.3)

that makes coefficients of g(x), to be gradually tapered to zero and was noticed by Tarter
and Lock (1993), and

-~ Jé .
@jn = Zl yicos (jmx;) (34)
1 .
as an estimator of each Fourier coefficient a; = V2 f . g(x) cos(jmx)dx in the expansion
of g(x).
we propose the new test statistic based on : g 2 (x;) as follows :
=
n3 bP i, — o 2 b
Zy = — 77 : (35)
o2 2 )
=

~ 2. . .
where ¢ ° is any consistent estimator of ¢ °.

Theorem 3.1. (Kim and Moon(1994)). Under the assumptions of model (3.1), assume that
1/2

m — © , n — o in such a way that SuD <;j<m M y(m,n) — 0, where

Amn) = | a;, — ajml. Then if h(n) = m'"WNn , Z, 4, 7 where Z is a
. V5 2

normal random variable with unit variance and mean —5—\7%;&21]—.

One of our interests for test is to see whether the test is consistent. The next theorem

provides the consistency of the test.
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= 23 A costaxn) and = V3 [ £

Theorem 3.2 Define e«;, =

cos ( jwx) dx. For any integér m assume that as n, m — © |

112
supls,s,n Ia,n —al — 0.

Proof. We will also assume that a i1s known as in Theorem 3.1. First note that

, 1/2
P(Z,>z,a)= P(A,+ B,+ C,= z,a) with 0, = 02(2flb§) ,
=
Anz (ng:lij(ajn—ajn)z - O'zjglbjz)/dm,
B, = 2n§1 b2 ( @jn — @jn ) @jn/ 0, and

- 2 2
C”_”Z:Ibf afn | Om.
A, converges in distribution to a normal random variable with mean zero and unit variance

by the Lindeberg-Feller theorem. Now, E ( B, ) = ( and by Lemma 3.1,

Var (By) < O(-2) (my’(mm) + 201 7Im' 7 (mn) + 1A .

1/2
Thus, Chebyshev’s inequality shows B, to O,,((—;;) ) Since

O( )(72(1% wym+ 21 fllm Ty (mn) + 11 FII?)

2
_@ Z. _d, _L\/I__Lﬂi_ and theorem has
n 20

<
Cn = \/50.2
by Cauchy-Schwartz inequality, It follows that

been proved.

By considering alternatives corresponding to certain subsets of the collection of all square

summable sequences, we can get an analogue result for comparing Z, with Tp, T, and

which is a stronger result than Theorem 3.3.

Theorem 3.3. For any integer # and constants ( < y; < 73 < % , and define

9m(7’1.72) = { & = (---,5—1,50,51,---)5 [y :

Assuming that %, m — o and ¢{(x) = V2cos (jrx), then for any e=(a,1) there

exists y; and ¥, such that

inf (Z,,,ZZa/I fjb g0,/ ) > 8.

Jm o eco, (v 7)
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Proof. We will assume in our proof that 6% is known since the extension to the case where

o?is replaced by a consistent estimator is handled as in Theorem 3.1. First note that

1/4
P(Zn= znal = & 6780 )

1/4
= P(An+Bn+anzma|—m_\f;_.glbi_léi(oi)

with
R 1/4 _
w6 4 = P B b'E) - BN
An = 1/2 3
(2% )
~ s
2\/’;1 m1/4 IZI b;( ajp — ﬂ\/?l—— bjlé.')él
B, = 172
az(zf_‘. bj*)
=1
and

_ 71 m!/t -1

P(A,,+B,,+ €2 zma = Fh7 12— 3 56 o))
y 1/4 B

> P(A,, + B,z z,a — ‘/é(ljz | m\/;L 121 bjléﬁ”f)-

Now, E {B,} = 0 because E{ Qjw — m\/;l b ! Ej} = 0. And by (2) of Lemma 3.1.

1/2 2
Var {B,} < & =0( : >
T 2 4 Vm
° 121 bi

for any alternative corresponding to €, ( 71, 72 ). Now,

_ -)/l m1/4 -1 A . )

P(An+Bn22md \/50'2 | \/_;l ]21 b; E;(D/
1/

4
- P(An+B,,22ma— D 1Bl e | P B

+ P(A,, + B, > z,a — —2 |B,|<e | mn

The first term of right-hand side is
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Y 1/4 _
P(A,,+B,,22,,,a— @‘72 L IB>e | m@ Jijl bjlé,-qoj)
< P(IB)> ¢) gﬁeigl

with o(1) = 0 as #— oo uniformly over £ € e ( 7, 7,) by Chebyshev’s inequality and the
fact that Var (B,) = O(1/Vm ) Now, it remains to show that

. N 4|
hmP(A,,+B,,Zza P IanlSe)zaf.

n »co

Since —e& < B, < ¢, for any &> ( there exists an #, such that for all n > n; (3.6) is

bounded below by

71
PlA,=2 2z, — + e .
( a \/—2_ o 2
Now A, converges in distribution to a normal random variable with mean zero and unit

variance by Lindebuger-Fellow theorem. Thus, letting # — o0 and e — 0, the desired result
is obtained.

Theorem 3.3 states that Z,, has also comparable power against alternatives of the form

1/4
—m\/;z— ﬁl bfl & ¢; while Tp has comparable power against alternatives of the form
=

il P& e;l V. But we can see that the higher frequency components corresponding to
=

p{x;) with j> m''* b7 will be farther away from the null in the alternatives of T'g
than in those of Z, for not too small value of m. This fact gives some theoretical

justification for the experimental conclusion that Z,, has better power than Tp type statistics
for many alternatives if we allow the number of temrs not to be much small. But compared

with T, , the higher frequency components corresponding to ¢;{x;) probably will be closer
to the null in alternatives of T, than in those of Z, since except for smaller s and
m'tCmtl bj_l when #m is more or less small. Therefore, we may expect that under
alternatives with lower frequency, Z, will have about the same power as Tp to say nothing
of T, . In contrast, it is predicted that Z, is perhaps less effective detecting alternatives
with higher frequency for a smaller m . But Z, may have comparable powers with T, for

a little larger m relative to its frequency against both lower and higher alternatives.

4. A Monte Carlo Simulation

We examine the small sample properties of our test for fixed alternatives in order to
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investigate whether our asymptotic results can be extanded in finite samples through the
Monte Carlo simulation study in this section. The Monte Calro simulation performed by

samples of size equal to 20 and 40 which were generated from model (1.1) using the ¢g;
uncorrelated normal random errors. The variance of error, ¢ 2 was assumed to be known and
without loss of generality, to be equal to unit. And x; were taken to be equally spaced. For

the function f in (1.1), we used

y

R I ) A WA Ct s R et D R W
fi@ = ble ) (5 )
where & = 0.25, 0.5,0.75,0.1, and

fo(x) = ycos (jrmx),

where y = 1, and j = 1,3,5,7 is to be manipulated to obtain higher and lower frequency
alternatives.

4.1 Powers Against The Alternative f; when a = 0.05

Sar.nple Type b
Size 025 050 075 1.0
Ty 0.11000 0.27400 0.55100 0.80700
Tg 0.16200 0.44500 0.77800 0.94900
2 T 0.08300 0.17400 0.36800 0.65000
Zy 0.16600 0.44200 0.77800 0.94200
T 0.10700 0.39000 0.77300 0.97200
Ts 0.26200 0.78000 0.98700 1.00000
o T 0.07400 0.25800 0.66800 0.95100
Zn 0.24100 0.75100 0.98200 1.00000

For each above combination, first uniform pseudo-random numbers are generated by
GGUBS in IMSL package. Using Box-Muller transformation method, we generated the normal
random errors with mean O and variance 1 for samples of each size. For samples of each size,

the proportions of times Tg, Ty, T, , and Z, exceeded their approximate upper a@ -

level critical values, 0.05, were recorded. In this case, the approximate upper a - level Table
critical values were empirically found by simulation from the null distribution of these
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statistics since, in general, it is well known that the normal approximation does not always
work well. In doing this, we used 10,000 trials to get more satisfactory critical values for
these statistics in each case.

Table 4.2 Powers Against The Alternative f, when '@=0.05.

Saérirgéle Type | . J . .
Twy 0.50900 0.48900 0.45500 0.40300
% Ty 0.81200 0.31400 0.11500 0.06700
T, 0.33000 0.33500 0.32700 0.33700
Zm 0.81500 0.36800 0.18800 0.09300
Ty 0.72200 0.73100 0.72600 0.69400
0 Ty 0.98700 0.72300 0.25600 0.10800
T 0.58200 0.63400 0.64700 0.65400
Zom 0.98400 0.71100 0.33600 0.20900

In summary, simulation results are likely to support our asymptotic analysis for the most

part. As we have seen in the examination of Table 4.1, the Berckley Tp test and Z,, test
have excellent power against alternatives f; , followed by 7y and then T, .

In the case of alternatives f, in Table 42, when j = 1, Both Z, and T5 have more
excellent power than Tw, T, . But, when f; has higher frequency, the Berckley Tz test has
the poor performance. This mean is that Tg and Z, test may have some difficulties in

detecting higher frequency alternatives. So, as see the result in Table 4.2, when the cases of

j=5and 7 Both Ty and T, tests have more excellent power than Z, , Tp tests.
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