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Kernel Density Estimation in the L™ Norm under
Dependence |

Tae Yoon Kim!

ABSTRACT

We investigate density estimation problem in the L* norm and show
that the iid optimal minimax rates are achieved for smooth classes of weakly
dependent stationary sequences. Our results are then applied to give uniform
convergence rates for various problems including the Gibbs sampler.

Keywords: Kernel density estimation; Uniform convergence; Optimal rate; Mix-
ing

1. INTRODUCTION

Recently research interest has been surging in density estimation problems
under dependence. For example, estimation for the stationary p.d.f. often might
be required for a Markov chain, an ARMA sequence, or the Gibbs sampler. This
article considers kernel density estimation problems under dependence, partic-
ularly the iid optimal minimax rates in L*™ norm. Tran (1990) obtained some
rates for weakly dependent variables under the additional condition that smooth-
ing parameter h, tends to zero more slowly than the iid case. See, e.g., Theorem
2.1 of Tran. Yu (1993) got the iid optimal minimax rates for B-mixing under
a similar condition on h, (see remark 2.2). These assumed conditions on h,
seem to be unattractive because they usually depend on the unknown parame-
ters. The purpose of this article is to show that the iid optimal rates for o-mixing
hold without referring to the unattractive conditions on h,. Our result answers
the question raised by Yu whether the iid optimal rates continue to hold for a-
mixing sequences. Note that a-mixing is weaker than S-mixing. Application of
our results to some interesting problems will be given in section 2.

We briefly discuss the mathematical framework of estimating stationary den-
sity and its derivatives by kernel density estimator for a stationary sequence. Let
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X = (X1,... ,Xpn,...) be a sequence of random variables with domain D in R%.
a(n) is called the a- mixing coefficient if

a(n) = s:psupﬂP(A NB) - P(A)P(B)|: A€ o(Xy,...,Xk),

B € 0(Xetn- )}

Suppose X3, ... , X, is a fragment of an a-mixing sequence of r.v.’s with a density
function on D. We would like to use a kernel estimator to estimate not only the
density but also its derivatives. Let @ = (ai,...,0q) denote a nonnegative
integer d—tuple, [0 = a1 + --- + a4, a! = a;!---a4!. Then for any z € RY,
denote D* = glol/ Ozt --- 8z, Let Q = Z[a]gm goD®, where the ¢’s are real
constants and g, # 0 for some [a] < m. Suppose we are interested in estimating
Qf(z) = Z[a] <m9aD*f (z). Without loss of generality, we may assume @) = D™;
hence based on a stationary mixing sequence Xji,...,X,, the kernel estimator
with a bandwidth 0 < h,, < 1 is

n

Fule) = (nhd) 1 Y- K(FE=2)

=1

and D™ f can be estimated by

Xi——.'L‘
hn

D™f(z) = n Rt an(Dme

i=1

),
where K(-) is a bounded kernel on RC.

2. MAIN RESULTS AND ITS APPLICATION

In this section, we give the main results on the kernel density estimation in
the L* norm for stationary a-mixing sequences. For simplicity, we introduce a
bias assumption and an algebraic growth condition used by Yu (1993).

Bias assumption of order (p,m). Let F be a class of densities. If there exists
an Cr > 0 such that for any 0 < h, — 0 and the kernel estimator fr. with the
bandwidth A,

sup |[ED™ fn(z) — D™ f(z)] < CrhP™™,
feF

then we say that (F, K) satisfies the bias assumption of order (p,m).
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Algebraic growth condition. Let
Gn(K,m) = {(D"K)(h;'(z ~ ) : z € D}

for a particular sequence h, — 0. For the class G,, of functions and a sequence
€n 4 0, we say (G, €,,) satisfies the algebraic growth condition if for some positive
constants C' and w

sup Ni(en, i, Gn) < Cn®,

where Ny is L' covering number defined as:

Ni(e, 4, Gp) = min {k g1y gk € L*(u) such that

min, [ lo(@) - 9,@ldua) < .9 € Gn 1)

1<j<k

for any distribution 4 on D and a class Gy, of functions in L'(p).

Theorem 2.1. Suppose X is a stationary a-mizing sequence with the mizing
coefficient a(n) = n™* for some k > 0. Let h, = (n~'logn)/Cr+d Assume
that (F, K) satisfies the bias assumption of order (p,m) and that g’s found in def-
inition (2.1) are independent of probability measure p and hence G, = G, (K, m)
satisfies the algebraic growth condition with an ezponent w > 0. If

E(g(Xi)g(X;)) < Chy! for any g € G and i # j (22)
and
k> {2(w +1)(2p +d) + 3(d + p)}/2p, (2.3)
then we have
sup sup |[D™f(z) — D™ f(z)| = O([n"'log n]P~™)/(@r+d)y 4 (2.4)

F zeRd

Remark 2.1: It should be observed that the rate of convergence established
in Theorem 2.1 is in fact optimal because a sequence of independent random
variables is also a stationary sequence. See Stone (1983). Note that the bias
assumption and the algebraic growth condition of Theorem can be shown to hold
if D =[0,1]¢, (D™)K is Holder continuous, and f belongs to some smooth class
of densities. See section 2 of Yu for detailed discussions. Note that Tran (1990)
assumed p = 1, the Holder continuity of K, the compactness of domain, and
(2.2). In addition (2.2) holds if the bivariate density f(X;, X;) is bounded.
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Remark 2.2: Recent results have been established under the additional condi-
tion that h;, tends to zero more slowly than the iid case. For example Yu (1993)
and Tran (1990) have obtained their results under this. In particular Yu’s result
for B-mixing holds under 2p > d. Note that 2p > d is equivalent to imposing an
slower speed of h,. She removed this at the cost of the compact domain, but it
appears to have severe technical problems (see Kim (1998)).

Remark 2.3: Since (2.3) holds for any p, w, and d when the mixing coefficient
is geometric mixing (i.e. a(m) = O(p™) for 0 < p < 1), it can be said that the iid
optimal rates hold without any additional condition under geometric mixing. It is
an useful application of our Theorem, considering that all the examples discussed
below are in fact geometric mixing.

Now we use Theorem 2.1 to give the rates of convergence of various density
estimators we could often face under dependence. Observe that our results below
holds without any additional condition on h,,.

Let X be a stationary Markov chain. Since Markov chain can be shown to be
geometric strong mixing, a direct application of our result yield

sup |D™f(z) — D™ f(z)] = O([n"! log n]P~™/(Zp+d)y 5 5. (2.5)
sup sup |f(ylz) — fylo)| = O([n~" logn?”/?F+29) as. (2.6)
z€E ye[o,14

under the conditions of Theorem 2.1. Observe that (2.5) and (2.6) addresses
convergence rates for the stationary density and the transition density of the
Markov chain respectively. For (2.6), we consider ((X;,X3),(X2,X3),...) as
a Markov chain in R?? and hence apply our result with d replaced by 2d. In
particular E denotes a compact set on which f(z) > ¢ > 0 and f(y|z) =
f(z,y)/f(z), where f(z,y) is a kernel density estimator with another kernel K;
on R4 with the bandwidth h, = O((n~tlogn)!/(2p+2d)),

Let {Y(t)}tcz be the unique sequence satisfying the following ARMA equa-
tion:

P Q
S B(i)Y(t—i) =) Alk)e(t — k),
i=1 k=0

where B(i) and A(k) are dxd and dxr matrices, B(0) = Id, ¢(t) are iid in R¢,
Ee(t) = 0. Since by Mokkadam (1988), Y (¢) was shown to be geometric mixing,
an immediate application of our result yields

sup|f(y) — f(¥)] = O([n" log n?”/*?+9). as., (2.7)
Y
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where f(y) is the p.d.f. of Y;.

The Gibbs sampler or its analogy is now a popular computer simulation
method to obtain samples from distributions which cannot be sampled from
otherwise. See Geman and Geman (1984). In the below, we apply Theorem
2.1 to the Gibbs sampler related convergence rate problems. See also section 4
of Yu. Consider the Gibbs sampler in the case of two variables (X,Y). It is
assumed that it is easy to sample from the two conditional probability distri-
butions f(zly) and g(z|y). To obtain one of the marginal distributions, say
f(z), the Gibbs sampler simulates a joint Markov chain whose limiting sta-
tionary marginals (equilibrium) are f(z) and g(y); namely, it simulates a joint
Markov chain Xy, Yy, X1,Y7 ..., X;,Y; starting with some initial distribution fj
from which we can sample, then continue by drawing Y; from g(-|X;) and X;4q
from f(-|Y;). Now we can use the kernel density estimator to estimate the density
function f(z) based on successive samples from the Markov chain. [cf. Liu et al.
(1991)]. Using the asymptotic stationarity condition to handle the nonstationar-
ity of the Markov chain generated from Gibbs sampler, one may show that under
a set of regular conditions,

sup |f(z) — f(z)| = O([n~" logn]/?P+9), 4. (2.8)

For details of the regular conditions, refer the condition of Theorem 4.2 in Yu.

3. PROOF

Throughout this section, let My denote a bound on both K itself and its
derivatives of order greater than m and c¢ denote a generic positive constant.
First we provide some lemmas which will be used later.

Lemma 3.1. IfX is a-mizng, then for p,q,r > 1, satisfying 1/p+1/q+1/r = 1,
we have

|EXoX; — EXoEX;| < 150" (5){E|Xo — EXo|P}\/P{E|X; — EXo|7}!/9.
Proof: See Theorem 17.2.1 of Ibragimov and Linnik (1971). a

Observing that for g € G,(k, m) and feF, gl < My, |fl < M and |Eg(Xy)| =
|E(D™K)((z — X)/hy)| < chl, it is easy to see that, for r > 1

Elg(X1) — Eg(X1)|" < chy. (3.1)
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Lemma 3.2. LetV = Zf;l(g(Xi) — E(g9(X3)) for b, < n and assume (2.2). If
X is a-mizng satisfying (2.8), then

E(V)? < cb,hd
uniformly over g € G(K, m).

Proof: Denote v = Eg(X;).

bn

E(V)® = E[)_(9(X:) - Eg(X:))]?
i=1

= ZE’ ) —v) +ZE ; (9(Xk) —v)

i£k
= baE(9(X;) - v) +2ZZE (9(X:) = v)(9(Xisx) — ).

Using (2.2) and (3.1),

ch?®  for k > 0,

E(g(X:) — v)(9(Xiyk) —v) < { che for k =0.

Since X;’s are a-mixing, by Lemma 3.1,
|E(9(X:) — v)(9(Xitk) — v)| < ca(k).

Thus ,
E(V)?=0 (b he + b, ) min(a(k), h2d)> (3.2)

k=1

If b,hd < 1, the right-hand side of (3.2) is bounded by c(b,hg + (b,h2)?) < cb,hl.
If b,h¢ > 1, the right-hand side of (3.2) is bounded by

c(bnh‘,iL + bnqh,%d + bnq_'”'l)

with ¢ = 1/h% < by,. Since k > 2 by (2.3), the last expression is less than cb,hS.
The desired result follows. O

The following result will be needed to approximate a-mixing r.v.’s by inde-
pendent ones.
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Lemma 3.3. Suppose m = 2st for some positive integer t. Suppose Vj, 1 <
J £t is a sequence of r.v.’s with V; being measurable with respect to the o-field
o(X(2j-1)s4+1:" "+ » X2js). Let & and v be positive numbers such that £ <|| V; ||l,<
oo for all 1 < j < t. Then there exists a positive constant ¢ and a sequence of
independent r.v.’s Wj, 1 < j <t such that W; has the same distribution as V;
and satisfies

PIV; = Wyl > & < clll Vs lly /)" als)?” (3.3)

where T = /(27 + 1).

The proof of Lemma is given in Bradley (1983).

Proof of Theorem 2.1: a) By the bias assumption of order (p,m), we have

| Qfnlz) — Qf(z) ||
< || Qfalz) — EQfa(z) || + Il EQfn(z) — Qf (z) |
sup

hpdm nY " g(Xi) - Bo(X1)| + | EQfulz) — Qf(z) |
g€Gn(K,m) =1

= Oplhg®™en) + ch2™,

where €, = <5[n‘1logn]1/2hfi/2 for § > 0 by (3.4). Then by choosing h, =
(n~! logn)Y/(4+2P) the desired result follows.
Thus our proof will be finished if we show that

Pl sup
9€Gn

where €, = é[n~! logn]1/2hg/2 with 6 > 0 and a > 1. To verify (3.4), we will
employ an approximation of weakly dependent r.v.’s by independent r.v.’s. Let

n

n~1Y " g(Xi) -~ Bg(X;)

i=1

> en) <en™® (3.4)

A = (nhd)~Y?(log n)/? and s, = [(nhg)l/z/(ZMk(log n)l/z)]. (3.5)

For a pair of the integers (sp,%,) such that (n — 2s,,) < 2s,t, < n, we divide
the segment of X1,... , X, of the mixing sequence into 2, blocks of size s, and
a remaining block. Then write

> (9(X:) — Eg(X;)) = Sin + Son + Re,

=1
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where , ,
Sin =) V(n,2j), Sen=» V(n,2j-1),
J=1 Jj=1
and .
JSn
Vi)=Y (9(X:) - Eg(Xy)), for 1 < j < 2t,,
i=(j—1)sn+1
and

n

Re= 3 (g(X) - Eg(X)).

i=28ntn+1
It is easy to note that |Re|/n can be made smaller than €,/3 since s, = o(ne,)
and g is bounded. Now we will find an appropriate bound for

P (|sm| > 6(nhd logn)!/? /3) +P (|52n| > 8(nhd logn)1/? /3) .

We will refer to V(n,27) simply as V; for simplicity. We have

2585

Vi= Y (9(Xi) - Bg(Xy)).
(2j—1)sn+1

Notice that 2s,t, is an integer. By Lemma 3.3, there exists a sequence of inde-
pendent r.v.’s Wj, 1 < j < 1, such that W; has the same distribution as V; and
satisfies (3.3). Now,

P (11| > 6(nhi logn)1/2/3)

iy in
<P ( > Wl > 8(nhd Iogn)1/2/6) +P ( > (V; = W;)| > 8(nhl log n)1/2/6) .

Jj=1 j=1
Clearly A|W;| < Asp, My < 1/2 and

exp(AW;) < 1+ AW; + (AW;)2 (3.6)
A simple computation shows that
A2(nhd) = logn (3.7)
By Lemma 3.2,

tn tn
S EW? =Y EV} < ctusyhl < cnhl. (3.8)
j=1 j=1
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|

tn tn
<P (Z W, > é(nhd 1ogn)1/2/6) +P (Z W, < —8(nhg 1ogn)1/2/6) . (3.9)

j=1 J=1

Observe that
tn

> Wi

j=1

> §(nhd 1ogn)1/2/6>

Let [ be an arbitrary large positive number. We first show that

tn
P (Z Wj > d(nhd logn)l/z/G) <n7

=1

Using the independence of the W;’s, Markov inequality and (3.6)-(3.8), we have
for sufficiently large

tn
P (Z W, > 8(nhd logn)/? /6)

IN

j=1 Jj=1

in
exp (—)\(S(TI,h;i1 logn)/2/6 + X2 Z EWf)

IA

exp ((~3/6 + ¢)logn) < n7!. (3.10)

In a similar fashion, one may easily show that the second term of (3.9) is bounded
by the right-hand side of (3.10). Thus we have

{

tn
P [I > (V= W) > 6(nhi log n)1/2/6}
Jj=1

tn

2.V

j=1

> §(nhd logn)1/2/6> <n7h (3.11)
Next,

<to max P [|[(v; - W))| > 8(nhi logn)'/%/(612)] (3.12)

1<j<tn

If || V; ||l,> 6(nhd logn)}/2/(6t,), then for some positive constant c,

tn
P [; > (V= W) > (nhi log n)l/Z/S}

j=1

IA

ctultn/ log n]"[nhS ) log n]~™"
= cepllPrd(4n)=2pr7}/(2p+d) (146 ) lp=Td=Tp+2pr7]/[(2p+d)] (3.13)
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by (3.3) with 7 = v/(2y + 1), (3.5) and (3.12), and hy, = (n~!logn)¥/(¢+2P) In
the last expression , we used the following, i.e.,

| Vi llz<csp foralll <j<t, and any v > 1. (3.14)

If || V; ||, < 6(nhd logn)'/2/(6t,), then

tn
P {1 (V; = W;)| > 8(nh] logn)'/% /6

j=1

IN

tn max P{jV; = W;| >\ Vj Il4]

< tp [nhg /logn]™"™",

which is again bounded by (3.13) for large n since t,/logn — 0o as n — oo.
By the given algebraic growth condition (i.e., the g's are fixed), we have

P (sup > (—:n)
gEGn
< cn®P ( > en>

for some w > 0. Then by (3.11) and (3.13), the last expression is bounded by

n~1Y" g(Xi) - Eg(Xy)
=1

n"ty " g(Xi) - By(X:)
i=1

< cn'w—l + cnw+{(d+l’)(1+‘r)—2pm’}/(2p+d) (log n)[p—rd—rp+2pn-r]/(2p+d) )

Thus w—1 < —1 for sufficiently large I, and w+{(p+d)(1+7) —2pr7}/(2p+d) <
~1if
{(w+1)(2p+d) + (d+p)(1+7)}/(2p7) < k.

Using continuity argument, one may replace 7 = 1/2 in the above. Note that one
may let v — oo by virtue of (3.14). Now we have

{2(w+1)(2p+d) +3(d+p)}/2p < k.

Thus if (2.3) holds, (3.4) follows from Borel-Cantelli lemma.
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