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The Chi-squared Test of Independence for a
Multi-way Contingency Table with All Margins Fixed T

Cheolyong Park!

ABSTRACT

To test the hypothesis of complete or total independence for a multi-way
contingency table, the Pearson chi-squared test statistic is usually employed
under Poisson or multinomial models. It is well known that, under the
hypothesis, this statistic follows an asymptotic chi-squared distribution. We
consider the case where all marginal sums of the contingency table are fixed.
Using conditional limit theorems, we show that the chi-squared test statistic
has the same limiting distribution for this case.

Keywords: Conditional limit theorems; Complete independence; Multinomial
models; Poisson models

1. INTRODUCTION

Consider a di x dy X --- x d; multi-way contingency table where the sample
size is » and the i-th variable has d; possible categories. For each cell 7 =
(my,m,...,m) where m; = 1,2,...,d; for j = 1,2,...,r, the cell frequency
belonging to 7 is denoted by z,. Let x® = (wgi),... ,xfi? )T be the vector of
marginal sums of the i-th variable; i.e. xg.i) is the number of observations that
belongs to the j-th category of the i-th variable. For the hypothesis of complete
independence, we can use the Pearson chi-squared test statistic

NPnxn

x=¥ (@x = Par)” "p"")z,

where pp, = ;=1 (x;’) /n) is an estimator of the cell probability p,. It is

well known that, under the hypothesis of complete independence, the limiting
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distribution of X is a chi-squared distribution with J[_; d; — 1 - >77_,(d; ~ 1)
degrees of freedom.

We consider the case where all marginal sums of the contingency table are
fixed. We will show that the limiting distribution of X is the same chi-squared
distribution for this case. There has not been much study in this context. Roy
and Mitra(1956) considered several configurations of the variables in two or three
dimensional contingency tables and heuristically derived the limiting distributions
of chi-squared test statistics. Alalouf(1987) used the Central Limit Theorem for
finite populations to prove that the result holds for the bivariate case (r = 2).
Park(1995) provided an intuitively appealing way of proof based on conditional
limit theorems to show the same result. He used the fact that the joint distribu-
tion of the cell frequencies with both margins fixed is the same as the conditional
distribution of a multinomial given both marginal sums equal to the fixed mar-
gins. Although Alalouf’s proof is self-contained, it does not utilize the above
statistical fact and so require a less intuitive mathematical approach.

We can utilize the same fact for multivariate case: The joint distribution of
the cell frequencies z, with all margins x(*) fixed, given by

(7) /(T 35).

=1 j=1 7 -

is the same as the conditional distribution of the cell counts y;, from a multinomial
model, given by

Y
n

: - (9 1.2
Hﬂ'yﬂ'!Iﬂ'I jl;Ilpﬂj ’ ( . )

given that y{) = x(i), where y(@) is the vector of marginal sums of the i-th variable
from (1.2) and pgl) is the probability of belonging to the j-th category of the i-th
variable. We will use the above statistical fact and the conditional limit theorems
in exponential families by Holst(1981) to prove that the result also holds for the
multivariate case (r > 3): While deriving the result we will use the multivariate
conditional limit theorem in Park(1995), which is an extension of a univariate
conditional limit theorem in Holst(1981).

In Section 2, we will derive the asymptotic joint distribution of the cell fre-
quencies and the limiting distribution of X using the e¢onditional limit theorems.
In Section 3, we will discuss some points in the proofs of the main results in
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Section 2 and a possible application to the test of complete independence for a
continuous multivariate distribution.

2. MAIN RESULTS

In this section, we will derive the asymptotic joint distribution of the cell
frequencies and the limiting distribution of the chi-squared test statistic. Before
deriving the distributions, we will define some notations which are needed for the
presentation of main results.

For easy representation of results we assume the vector x = (z,) of the cell
frequencies is arranged in a standard order; the index m; of the first variable
changes from 1 to d; slowest and 7y of the second variable changes from 1 to dp
second slowest, and so forth. Also, for the convenience of notation, we define

Pn = (Pnx) = PSzl) ® P%z) ®--® pglr),
where pg) = x(®/n and ® is the direct or Kronecker product (see p.265 of
Searle(1982) for details). For a given vector y = (y1,¥2,--- ,ym)’, we define the

diagonal matrix D(y) and the vector of square root values \/y to be

D(Y) = dia'g(ylay2>~-- 1ym)7 \/-}7: (\/57\/%’ 7\/@;)’11'

Finally, we will define a ‘d’(deleted) notation such that yg = (y1,%2,--- , Um-1)"
for a given vector y = (y1,%2, ... ,Ym); i.e. yq is the vector obtained by deleting

last element of y.

Theorem 2.1. Suppose that x is drawn from the distribution in (1.1). Let
p(ni) —-q® asn — oo foralli =1,2,...,r, where g9 = (qgi),... ,q((ii))T sat-
isfies 0 < ¢V < 1 forall j = 1,2,...,d; and Y, = 1. Let q = (gr) =
Veq?Pe .. q™ so that p, = q as n — oo. Then the limiting joint
distribution of the cell frequencies is

{D(npn)}~V2(x — npn) L5 N(0, A%),
where

A =T+ -1)yava - EO{ENT
i=1

and
E® — q(1)®...®jdi®...® q(
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with Iy, in the i-th position of the Kronecker products for each i =1,2,...,r.
Proof: From the statistical fact in Section 1, we observe that
Lx)=L (yly(i)/n =p¥, fori=1,2,... ,r) ,

where y is drawn from the distribution in (1.2). Now we will verify the as-
sumptions A1-A3, A4’, A5’ and A6 of Corollary 1 in Park(1995). Assumption
A1 requires that (1.2) is a regular exponential family, which is satisfied with the
canonical sufficient statistics equal to y‘(ii),z' =1,2,...,r. Assumption A2 requires
that 6, need to be the maximum likelihood estimator of 8, a natural parameter
for the distribution (1.2). This assumption is satisfied when s,, the vector of
fixed values the canonical sufficient statistics are assumed to take, is the vector
of (pg))d, (pg))d, R (pslr))d combined and 0, is the natural parameter corre-
sponding to p@® = psf ) for all i, where (p,(lZ ))d is the vector obtained by deleting
the last element of psf ), and p® = (pgi), e pgi))T is the vector of marginal prob-
abilities for the i-th variable y(¥. Assumptions A3 requires that the covariance
matrix of the vector of yg),i = 1,... r combined is positive definite, Assumption
A4’ requires that the variance of any linear combination of yfii),i =1,...,ris
finite when n = 1, and A5’ is needed for continuous distributions, all of which
are trivially satisfied. Assumption A6 requires that 8, converges to a number 8,
which is satisfied when 65 is the natural parameter corresponding to pl) = q®
for all 4.

Next define z = {D(nq)}~/2y and 20 = {D(q(;))}‘l/2 yfii) for each i. Then,
by the corollary, we have

{D(npn)}V2(x — npy) = N(0,A — BC™'BT),

where
A = Covy,(z) , B = Covg,(z,w) ,C = Covy, (W),

with w the vector of z(!), ... z(") combined. It is well known that

AZI—\/G\/(_IT’

. =T )
and B = (By,By,... , By) with B; = EY) — /@ /) for each i, where E{) is
the matrix formed by deleting the last column of E®. Since

=V =1V /i
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for each 7, we have
r . T
BC'BT = 3" Bi(I+/aPy/a¥ /¢¥) BT
i=1

Let e; be the last column vector of E® for each i. Then it is easy to show that

EO{ENT = BEMNT + e;el

Va=EN/q® = BD /gD +1/¢0 e

Combining these relations and doing some simple calculation, we can show
that

and

for each 1.

(T AV Ja) B = BOEOY e, ()
which completes the proof. 0

Corollary 2.1. Under the assumptions of Theorem 2.1, the limiting distribu-
tion of X = (x — npp)T{D(npn)} L (x — npy) is a chi-squared distribution with
[Ti=1dj — 1= 327_1(di — 1) degrees of freedom.

Proof: It is sufficient to show that A in Theorem 2.1 is an idempotent matrix of

rank []7_, dj—1-37_,(di—1). Since {(EYTE® = Iy, and {EG}T, /q = \/q()
. A) - T

for each 1, and since {EMTEW = \/q@/q0)" for i # j, it is easily verified

that \/_\/_ and EO{EOYT — /4. /qT (i = 1,2,...,r) are mutually orthogonal
idempotent matrices of ranks 1 and d;(i = 1,2,... ,r), respectively. From these
results, it is easy to show that A is an idempotent matrix and that it is of rank
tr(4) = H] 14— 1 =30 (di - 1) 0

3. REMARKS

Firstly, we will interpret the components of the asymptotic covariance matrix
A* and then show a heuristic derivation of A*. A ‘projection matrix \/a\/(_lT
the component corresponding to the loss of degrees of freedom due to fixing the
sample size n and a projection matrix E(i){E(i)}T — \/a\/aT is the component
due to fixing the margins of the i-th variable. Also, we can heuristically derive
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the result in Theorem 2.1 easily by using generalized inverses (g-inverses). By
using the (Moore) g-inverse, it is easy to show that

. T T . T
(ED — vayq® ) (I —4/q®4/q® )~ (B® — /qy/q® )T
= EEOY - vave' (3.1)

- ~T . ~T
since (I —1/q®+/q(®" )~ = I—1/q¥+/q®" for each i. Also, by using a reflexive
g-inverse, the equivalence between (2.1) and (3.1) is directly established since

T
T J i -
(I — y/qP4/q® )~ = (I—\/q(d)O\/q(d) )~ g :

Secondly, the result can be used for testing complete or total independence
of variables from a continuous multivariate distribution. By discretizing the i-th
continuous variable into a categorical variable with d; categories of (at least ap-
proximately) equal size for each 7, we can test the hypothesis of complete indepen-
dence by the chi-squared test. Even though there has been lots of study on non-
parametric tests of bivariate independence, very little has been written on test-
ing multivariate independence. Some tests are actually testing pairwise indepen-
dence (see Blum, Kieffer, and Rosenblatt(1961) and Puri, Sen, and Gokhale(1970)
among others) and some tests are not easy to use in practice since test statistics
or their limiting distributions are not easy to compute. The chi-squared test
statistic is easy to compute, nonparametric, and has a well-known limiting distri-
bution. Moreover, it does not focus on pairwise independence but on multivariate
independence involving three or more variables.
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