Journal of the Korean Statistical Society (1998), 27: 2, pp 205-220

Tests For and Against a Positive Dependence
Restriction in Two-Way Ordered Contingency Tables

Myongsik Oh!

ABSTRACT

Dependence concepts for ordered two-way contingency tables have been
of considerable interest. We consider a dependence concept which is less re-
strictive than likelihood ratio dependence and more restrictive than regres-
sion dependence. Maximum likelihood estimation of cell probability under
this dependence restriction is studied. The likelihood ratio statistics for and
against this dependence are proposed and their large sample distributions
are derived. A real data is analyzed to illustrate the estimation and testing
procedures.

Keywords: Chi-bar-square distribution; least favorable distribution; level proba-
bility; likelihood ratio test; uniform conditional stochastic ordering

1. INTRODUCTION

Dependence concepts for ordered two-way contingency tables have received
considerable interest since Lehmann (1966) first introduced three types of depen-
dence concepts namely, quadrant, regression, and likelihood ratio dependence.
Douglas et al. (1990) reinterpreted dependence concepts in terms of various
classes of odds ratios, which include local odds ratio, local-global odds ratio and
global odds ratio. Requiring a collection of each of three classes of odds ratios to
be bigger than or equal to 1 corresponds to positive likelihood ratio dependence,
positive regression dependence and positive quadrant dependence, respectively.

Statistical inference concerning these dependence concepts in two-way ordered
contingency tables have been studied widely. For positive likelihood ratio depen-
dence, which is also called total positivity of order 2 or trend, several tests have
been proposed. Cohen and Sackrowitz (1991), Hirotsu (1982), Lee (1990) and
Patefield (1982) are among others. Nguyen and Sampson (1987) studied testing
problem for positive quadrant dependence in ordinal contingency tables.
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Unfortunately, no explicit forms of maximum likelihood estimates of cell prob-
abilities under each of three types of positive dependence restrictions have been
found yet except the case either 7 or ¢ are 2. Readers may refer Oh (1995) for
detailed estimation procedures with various sampling schemes for the latter case.
Dykstra and Lemke (1988) studied iterative algorithm for finding maximum like-
lihood estimate under likelihood ratio ordering. Feltz and Dykstra (1985) studied
iterative method for finding maximum likelihood estimate under regression de-
pendence for several survival functions. This algorithm can be used for finding
maximum likelihood estimate of cell frequencies under positive regression de-
pendence restriction. We are not aware that any iterative algorithm for finding
maximum likelihood estimate under positive quadrant dependence restriction has
been already developed.

Consider a type of dependence concept which is less restrictive than likelihood
ratio dependence and more restrictive than regression dependence. As it will be
explained later the benefit of using this dependence concept is mainly due to that
a closed form of maximum likelihood estimate under the restriction is available.
To illustrate this dependence concept we let p;; > 0,i=1,2,...,r,j=1,2,... ,c
and Eij pi; = 1. Consider the following restriction. For ¢ = 1,... ,r - 1,5 =
1,...,¢c—1,

™
Pij - Zl=i+1 Pej+1
T
Dij+1 - Zl=i+1 Dej

> 1. (1.1)

The cross product ratio in (1.1), which we will call continuation odds ratio, is
based on continuation-ratio logit models. It is not difficult to show that (1.1) is
equivalent to

ZZ:i Pej

S P is nondecreasing in ¢ for each j = 1,... ,c— 1. (1.2)
=i 1]

Then restriction (1.2) can be interpreted as follows. The ratio of two survival
functions of the conditional distributions of columns § and j + 1 is nondecreas-
ing in ¢. This is the so-called uniform stochastic ordering. We say that the
conditional distribution of column j is uniformly stochastically greater than the
conditional distribution of column j + 1. In this sense, we call restriction (1.2)
uniform conditional stochastic ordering. Shaked (1977) refers to this restriction
as conditional hazard rate decreasing.

In this paper we are going to discuss statistical inference procedures under
(1.1). Section 2 deals with the maximum likelihood estimation under restriction
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(1.1) and the strong consistency of the estimators. In Section 3, we consider
testing problems. The likelihood ratio statistic for testing independence against
restrictions (1.1), where the independence hypothesis is reintepreted as

T
Pij - Ee=,~+1 Dej+1
T
Dij+1- El.—_i+l Pej

Hy : =1, fori=1,...,r=1,57=1,...,e-1. (1.3)
We also consider likelihood ratio test of restriction (1.1) against all alternatives.
The main results from Section 3 are the asymptotic null distributions of two
likelihood ratio statistics and their upper bounds of the right taill probabilities,
which we call least favorable configurations. In section 4, a real data is analyzed
in order to illustrate the estimation and test procedures.

2. MAXIMUM LIKELITHOOD ESTIMATION

Suppose p;; > 0,i=1,2,...,1,j=1,2,... ,c and Eijpij = 1. Let n be the
total count, i.e., sample size and p;; be the relative frequency of an event having
probability p;;. Then the likelihood function is proportional to []}_, H?=1 pi"Pi.
It is convenient to use a one-to-one transformation of the parameter space by
setting

,
Dij . .
9--=——,¢~=E pej, fori=1,...,r=1,5=1,... ¢
Y ZZ:ipej ’ =1 ” ’

Then p1; = 01;¢;, pij = 656 [[Z1(1 — 0g5),6=2,...,7 =1, prj = ¢; [[}=1 (1 -
0¢;) for j =1,2,... ,c. The basic restriction becomes

(44
0<6;<1,0<¢j<li=1,...,r—1,j=1,...,¢c, and » ¢;=1.

Jj=1
It is not difficult to show that (1.3) is equivalent to Hy : 6;; = 05 = --- = ; for
i=1,2,...,r —1 and (1.1) is equivalent to
Hy: 0;1>260;0>---20,.fori=1,2,...,7r—1. (2.1)

Let > be the partial order on {1,2,... ¢} defined by i = jif Il <i< j<e
Then (2.1) is equivalent to that 6; = (6;1,6:2,... ,0i.) is isotonic with respect to
=fori=1,2,...,r—1.

The likelihood function, in terms of 6;; and ¢;, is proportional to
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r—1 c c
H H 0;"P (1 — ;)" Li=imaPes | H ;" Li=1Pii (2.2)
=1 | =1 7=1

We note that (2.2) is a product of two components; one is a function of only
6;;’s and the other is a function of ¢;'s. The inside the brackets can be viewed
as a products of ¢ independent binomial likelihood functions. The second part is
a multinomial likelihood function.

The maximum likelihood estimates of 8;;'s and ¢;’s under Hy are given by 67
and ¢3, where

> =1 Dij

o o __ _ o __ P
h o= = =0 = i =1...,7 -1,

E’é:z- 2;21 Dej ’
T
¢; = Zﬁl]a] = 1,2,--- s C.
i=1 ’

We now consider maximum likelihood estimation under (2.1). Since (2.1) does
not involve ¢;’s, we can maximize (2.2) by maximizing the two parts separately.
The second part is just a multinomial problem since no restriction except basic
restriction is imposed. The maximum likelihood estimate, @7, of ¢; is equal to
#-

Next we consider estimation of 8;;’s under (2.1). Since (2.1) does not relate
6;;’s for different values of 4, the maximum of the first part in (2.2) can be
achieved by maximizing r — 1 binomial likelihood functions independently. Let
8; and p, be sample statistics for 8; and p; = (35—, D1, D ope; Pe2s - - 5 O ope; Plc)s
respectively. As in Example 1.5.1 of Robertson, Wright and Dykstra (1988), the
maximum likelihood estimate of @; under (2.1) is the isotonic regression of 6;
onto the closed convex cone T = {x € R®: 21 > 29 > --- > z.} with the weights

pi, which we will denote by Ep, (91|I), where jth component is given by

B 4.
E;, (0i|l') = max min —-—IB—Z-K—EQ‘;%A—.
J o 1Sasg Bk Yy S i Dre

This leads to the following theorem.

Theorem 2.1. The mazimum likelihood estimate of p under restriction (1.1)
is given by p*, where p* is obtained by evaluating p at 6; = 0] and ¢; = (;S; for
1=1,2,...,r=1,7=1,2,... ,c with

0: = B, (imz) .
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For computation of Fy, ([MI) , the pool-adjacent-violators algorithm (PAVA)
can be used. See page 8-11 of Robertson et al. (1988) for the description of the
PAVA and an example.

Next we show that the maximum likelihood estimate under H; is strongly
consistent. Corollary to Theorem 1.4.4 of Robertson et al. (1988) shows that
the projection operator Ew(x|Z) is continuous with respect to both of w and x.
Now it follows from the strong law of large numbers that the restricted maximum
likelihood estimate, p*, converges to p with probability one if H; is true.

Theorem 2.2. The mazimum likelihood estimator, p*, of p under Hy is a
strongly consistent estimator, i.e., Pr{lim, o p* = p] = 1.

3. LIKELIHOOD RATIO TESTS

3.1. Test of Independence Against Dependence

Consider first the problem of testing the null hypothesis Hy against the alter-
native hypothesis Hj. The likelihood ratio statistic is

_ suppeg, L(p) |y [ 5 (65)" P (1 — 9%)”2;”'“13”]

01 = suppep, L(P) IR o T [H;=1(9fj)"f"j(1 —o)" Pi=it1 ﬁu'].

=1

The test rejects Hy for large value of Tp; = —21nAg, i.e.,
r—1 c
Toy = 2nY | pij(n6}; — n63)+
=1 | j=1

(Y pe)(In(l —63) —ln(1 - 65)) | - (3-1)

j=1 f=it+1

Next we find the asymptotic distribution of Ty; under Hy. Expanding In ;;
and In 67; about 6;; and In(1-6;;) and In(1—67;) about 1—6;; and using properties
of isotonic regression (see Theorem 1.3.2 of Robertson et al. 1988), (3.1) is
rewritten as

|y s 2 [ Pij | bmip1 Dij < o Pii  Shoiii Bij
o ; _ R ; _
ny | D65 - 6y) —ﬁ"zl' + ——g;—) - 576z - 6yy) (_2J+ it )
=1 1 ©j ij

2
j= j=1 Q5 Yij
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where a5 (8;5) is :between (§,~j and 6}; ( 6;; and 6;) and 7}; (di;) is between 1 — éij
and 1 -6} (1 —0;; and 1 — 67;). Note that ay; and S;; converge to 6;; and ~;;
and d;; converge to 1 —6;; with probability one under Ho. This fact implies that,
for sufficiently large n,
Pz; + Zl-z+1 Pij _ Bij + 22=i+1 Bij ~ (>l ﬁlj)3
~ ~s . td ~ .
z] 62 azzj 71'2_7' Pij Zl:i-{-l Pej
We note that if Hy is true then
(i Pes)’ - (Ce=ipe)?
Pij ZZ=1+1 Py Pi EZ=1+1 pe
where p;. = 3 7_ pi;- For sufficiently large n,
(Creibe)® | (Ciipe)? O

~ T o T
Pij Ymin1 Pt Pi- Lmiv1 Pt

for j=1,2,...,c

pojfor j=1,2,... ,c

Now we have
r—-1 ¢ T
5 2] (Tpeipe)’ <.
T =n [ — 0i5)% — (0% - 6;))*| === " puj- (3.2)

It follows from Theorem 1.3.2 of Robertson et al. (1988) that

Z 0,563 EWJ Z 093 sz and Z 03 Zm] = Z 035" Emﬂ

=i j=1 =i

Hence (3.2) is equal to

nZ (impe) Zw;;—e:,) S by =

Ze_z+1pf =i
(2o pe)?
Z A 2_: (B (V0. - 8ID); — By, (V0 - 00)1C);} ez::”’)
where C={x€R°: 2y =22 =--- = z}.

By the straightforward (but tedious) use of the delta method and using The-
orem 2.2 we can show that /n ((91, 92, . 97_1) - (01,69, .. ,0,_1)) converges
in distribution to a normal random vector with mean 0 and variance X, where
¥ is a block diagonal matrix with block elements X;,¢ =1,... ,7 — 1 defined as

¥; = diag {Pij(z;m'.;.] pej) j=L12... c}
’ Soapel b
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Now Tp; converges in distribution to

r—1 ¢ , ,
DO {Ep (XilT)j — Ep,(XilC),} (b P )* (i Pts)

i=1 j=1 pi. (22=i+1 Pe.)

where X; = (X1, Xiz,... , Xjic) and Xj; is an independent normal variable with

the common mean 0 and the variance ((35_; pe.)? > j; Pe;) /s (3 p—;ii1 Pe.)- For
each 1 let

_ . 1Ty, 1oy 12 (ELiZ"l-)Z(ZZ:iPlj)
U'l - ; {E i(lez)] Epi (Xllc)]} pi_(z:z:i-*-l pl) .

Then by Theorem 2.3.1 of Robertson et al. (1988), U; has a chi-bar-square
distribution, i.e., for all £,

c
Pr{U; > 4] =Y P(4,¢;p:)Prxi_, > 1), (3.3)
=1

where x2 denotes a chi-square random variable with v degrees of freedom and
P(¢,c; w) is the level probability that Ew(Y|Z) takes on £ distinct values, where
Y = (Y1,Ya,...,Y.) consists of independent random variables and Y; is N(0, 1 /w;)
We note that U;’s are independent. We also note that if Hy is true then p; =
> t—ipe(p-1,P2,... ,P.c). Since level probabilities do not change their values if
weights are multiplied by a positive constant, the weights in P(4,¢c; p;) can be
replaced by (p.1,p.2,.-. ,P.c). Then the distributions of U;’s are identical. Hence
the aymptotic null distribution of Tp; is a convolution of r — 1 independent,
identical chi-bar-square distributions. The next theorem summarizes the above
argument.

Theorem 3.1. Under Hy, for all t,

(r—1)c

Jim Pr(Ty >t = ezl CoPr(x5_,i1 > 1],
=r—

where Cyp is called mizing coefficient defined as

r—1
Ce = ' Z HP(&C,C; (p-17p~27"' ap-c))'

O +lo+... A4l _1=L k=1
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In the problem of testing the equality of several distribution functions against
uniform stochastic ordering, Dykstra, Kochar and Robertson (1991) show that
the asymptotic null distribution of the test statistic does not depend upon the
common distribution function. It is, however, of interest to observe that the
asymptotic null distribution of T; depends upon the unknown parameter p.

Since the distribution of Tp; depends upon unknown quantities we need to
figure out how to find critical value. One method is to find the least favorable
distribution, which is stochastically largest within the class of asymptotic null
distribution. The test based on the least favorable distribution is, however, very
conservative.

We now find the least favorable distribution. Note that U;’s are indepen-
dent, identically distributed. Moreover they are all nonnegative. Hence the least
favorable distribution can be obtained by finding each of least favorable configu-
rations which maximize Pr[U; > t]’s, respectively. It follows from Theorem 1 of
Robertson and Wright (1982) that, for all ¢,

¢ -1
e
=1

Now we have the following theorem.

Theorem 3.2. Under Hy, for all t,

(r—-1)c
: 2
lim Pr{Ty > ] < 621 CePr(Xi—ri1 2 1],
=r—

where

c—1 c-—1 c—1
= . 2_(7'_1)(6_1).
c 2 . (31 - 1) (52 - 1) (fr—l - 1)

htlot o=

Oh (1994) studied methods for approximating the null hypothesis distribu-
tions of several test statistics by using estimate of the unknown quantity on
which the null distribution depends. We recommend that the quantity in (3.3)
be approximated by

[+
SN P, c;(pa, Dy D)) PriXy > 1. (3.4)
=1 '

Using these methods we may show that (3.4) generally provides a very good
approximation to the asymptotic null distribution of Tp;.
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3.2. Test of Dependence Against All Alternatives

Next we consider the problem of testing the null hypothesis H; against all
alternatives, i.e., Ho, which imposes no restrictions other than the basic restric-
tions. The likelihood ratio statistic is

TT=} [T 07 (1 - 6y B P
| ey [H (0i5)mP (1 éij)nZLiHﬁij]'

The test rejects Hy for large value of 712 = —2In Ay, ie.,

A =

r—1 c c T
Tio =21 | Y pij(Inbij — nof;) + ) ( > pe)(In(l — ) — In(1 - 6))

i=1 | j=1 j=1 f=i+1

Expanding In6;; and In(1 — 6}; ;) about éi]’ and 1 — éij, respectively, and writing
in terms of prOJectlon operators we have

T, _ii[ — VnEs, (0 II)] pl] +Ze=z+1peg
12 e i\V1 0'” pw 3

where o5 (pi;) is between 9i]~ and 6; (1- éij and 1 —6;; )-

Consider the computation of Ej, (6;|Z). Suppose 6;; > 6; j+1. For sufficiently
large n we have 9U > 6; g+ with probability one. This implies that no amalga-
mation between 91] and ; j+1 occurs when computing Eg (BZII) Define a binary
relation =g on {1,2,...,c} by

arzg, b only when 8;, = 0;; and a > b.

It is not difficult to show that >g is a partial order on {1,2,...,c}. Define Tp,
by {x € R°: 2, 2 zpifa =g, b}. Using the strong law of large numbers and
following the lines of Lemmas A and B of Section 5.2 in Robertson et al. (1988)
we have

By, (8:T) = By, (8:Tg,)
provided n is sufficiently large. Then

r—1 ¢

Ty ~ [Bo.(v/l8: - 6:)|Tg,); - /(0 - Bi)J] {pl, . M}

1 j= 1 01] pl]

™.
Il
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and hence 175 converges in distribution to

r—-1 ¢

2 [ (Xhipy)®
> [Epi (XilZg,)5 — Xij] {EZ‘;;”—)—} :
i=1 j=1 Dij 2 p=iv1 Plj

r 2
Let V; = Z;=1 I_Ep" (Xz’lfgi)j - Xii] {(E;=ip£j)3/(17ij Diitl pej)}- Then
by Theorem 2.3.1 of Robertson et al. (1988), V; has a chi-bar-square distribution.
Specifically, under Hi, for all t,

[4
PriV; 2 4] = > P(4,¢;pi, =g, ) Prlx2—¢ 2 1), (3.5)
£=1

where P(¢, ¢; p;, tai) is level probability defined as earlier except different partial
order. Since V;’s are independent, the asymptotic null distribution of Ty5 is a
convolution of (r — 1) independent chi-bar-square distributions. The distribution
obviously depends upon unknown parameter p;’s. This leads to the following
theorem.

Theorem 3.3. Under Hy, for all t,

(r—1)e
nlglgo Pr(Ti; > t) = 221 CZPT[X%—T-{-l > ],
=r-—-
where
r—1
Ce= I Pt e pry =g,)-

b4+ . 4l _1=C k=1

Next we find the least favorable distribution of T}5. Note that Z C Ioi. The
(3.5) is maximized when T = Zy , which requires that

O =0ip="-- = 0. (3.6)

Note that p; = (¢1Ti=i(1 = 0n), 2 [TLZ1(1 = 0ra),- 6 [TL21 (1~ 64c))- 1
(3.6) holds, then p;, = K - (¢1,¢2,... ,¢.), where K is the common value of
2;11(1 — 0¢;). Since level probabilities do not change their values if weights are

multiplied by a positive constant, if (3.6) holds then (3.5) is equal to

S Pl (ds b -, be), 2) PP > 1]

=1
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and hence the distributions of V;’s become identical. It follows from Theorem 1
of Robertson and Wright (1982) that, under the condition (3.6),

1
PriV; 2] < 5 {Prxe—a 2 8] + Prixc_1 2 1]} -

Then the least favorable distribution of 735 becomes a convolution of (r — 1)
independent, identical chi-bar-square distributions. We summarize the above
argument in the following theorem.

Theorem 3.4. Under H,, for all t,

r—1
. r—1\.-
nlggoPr[Tn >t < 82_:0 ( 0 )2 T+1P"'[X%c—1)(r-1)—e > ). (3.7)

Critical value can be obtained from (3.7) for a very conservative test. Rather
than using this conservative test one can use an approximate test which is imple-
mented by approximating the null distribution using the similar method studied
by Oh(1994). Such test procedure may be found in Oh(1998).

4. EXAMPLE

To illustrate the estimation and testing procedures discussed in earlier sec-
tions, we examine a data set, taken from Srole et al. (1978 p 289), which describes
the relationship between mental impairment and parents socioeconomic status for
a sample of residents of Manhatten. We would like to test whether there is a ten-
dency for mental health to be better at higher level of parents’ socioeconomic
status.

Table 4.1 : Mental Health Status and Parents’ Socioeconomic Status

Parents’ Socioeconomic Status
Mental Health | A(high)y B C D E F(low)
well 64 57 87 72 36 21
mild 94 94 105 141 97 71
moderate 58 54 65 77 b4 54
impaired 46 40 60 94 78 71

Table 4.2 shows the estimated continuation odds ratios. For comparisons
sake, we list the local odds ratios. The odds ratios which are less than 1 are
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Table 4.2 : Estimated Continuation Odds Ratios and Local Odds Ratios

Odds ratio |1 2 3 4 5
Continuation | 1.0661 1.2234 1.0739 1.4679 1.4672
Local 1.1228 1.1170 1.0631 1.3759 1.2548
2 Continuation | 0.9038% 1.1905 1.0187 1.1221 1.2937
Local 0.9310% 1.0776 0.8822% 1.0194 1.3662
3 Continuation | 0.9340% 1.2462 1.3225  1.1832 0.9103*
Local 0.93407 1.2462 1.3225  1.1832 0.9103*

—

[E—y

Table 4.3 : Computational Details for éij, 675, 07, and &;

i 1 2 3 4 5 6 0,
1 6; | 02443 0.2327 0.1986 0.1875 0.1358 0.0968 | 0.1849
6% | 0.2443 0.2327 0.1986 0.1875 0.1358  0.0968
2 6;; | 04747t 050001 0.4565 0.4519 0.4236 0.3622 | 0.4449
6. | 0.4870 0.4870F 0.4565 0.4519 0.4236  0.3622
3 6 |0.5577t 057450 0.5200 0.4503 0.40911 0.43207 || 0.4820
6z | 0.5657%  0.5657F 0.5200 0.4503 0.4202% 0.4202%

bj 0.1578 0.1476 0.1729 0.2313 0.1596 0.1307

marked by +. The fact that 12 out of 15 odds ratios are bigger than 1 indicates
that there is a tendency being positively dependent in the sense of dependence
concept discussed earlier.

The computational details are found in Table 4.3. The order-violated param-
eters are marked by { and the corresponding maximum likelihood estimates are
marked by t. The restricted maximum likelihood estimate of 63; and 6, for
instance, are given by

p21 + P2
1 )
> o—o(pa + pe)

The computed value of likelihood ratio statistic Tp; = —21n Ay is 46.97682.
To find p-value of the test, we first need to compute the level probabilities,
P(¢,6;p;), ¢ = 1,2,...,6. We note that P(¢,6;p;) is unknown. As mentioned

*  __ ¥ __
621_022_’
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Table 4.4 : Mixing Coefficients Used in a Convolution of Chi-bar-square Distri-
butions

14 3 4 5 6 7 8 9 10

approx. | .00390 .02738 .08771 .17007 .22364 .21167 .14926 .08000
equal | .00463 .03171 .09855 .18388 .23126 .20772 .13781 .06886
least | .00003 .00046 .00320 .01389 .04166 .09164 .15274 .19638

14 11 12 13 14 15 16 17 18

approx. | .03292 .01042 .00252 .00046 .00006 .00001 .00000 .00000
equal | .02616 .00756 .00017 .00027 .00003 .00000 .00000 .0O00O
least | .19638 .15274 .09164 .04166 .01389 .00320 .00046 .00003

earlier we can approximate it by plugging in p; and it provides generally a good
approximation. It is, however, still unable to compute the level probabilities
since no explicit formula for computing level probability, P(¢,k;w) with £ > 6
and arbitrary weights w, is available. Robertson and Wright (1983) studied
approximation of level probabilities for the simple order. They suggest that the
equal weights approximation can be used if the ratio of the maximum weight to
the minimum weight is less than 3.4. We may also use the equal weights level
probabilities. For the equal weights case see Robertson et al. (1988). Based on
these level probabilities we compute mixing coefficients, Cy’s, defined in Theorems
3.1 and 3.2. Table 4.4 lists the mixing coeflicients.

The p-values of this test, which are 2.1 x 1078, 1.8 x 1078, and 3.9 x 10~ for
each method of computing level probabilities, are close to zero. Clearly there is a
strong evidence supporting the tendency for mental health to be better at higher
levels of parents’ socioeconomic status.

5. CONCLUDING REMARKS

In this paper we have discussed statistical inference concerning a new type
of dependence concept which is based on continuation odds ratios. There are,
however, three other types of continuation odds ratios namely,

Pij* L1 Pl gy Poj Pirljel and Sy Pit Pit1jt1

Dit1,j5 - Ez:j—H pie’ Zzzl Dej+1° Pitl,j , Ziﬂ Pi+1,6 * Pi,j+1 '
Requiring each type of odds ratios to be greater than or equal to 1 corresponds
to each specific type of dependence concepts, respectively. These four types
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of dependence concepts have virtually the same structure and properties. But
there is no heirarchical relationship among these four dependence concepts. By
symmetry argument we can easily implement the estimation and test procedures
for each type of dependence concept.

In the analysis of categorical data, multinomial or Poisson models are gener-
ally assumed. In this paper, we assume a single multinomial model, i.e., p;; > 0
and Zij pi; = 1. One might, however, be interested in other sampling models.
Assume that p;; > 0 and > ;p;; = 1 for j = 1,2,... ,c. This is the so-called
column product multinomial model. Inference under this model is the problem
of uniform stochastic ordering among several multinomial populations. Statis-
tical inference for this problem may be found in Dykstra et al. (1991) and
Park, Lee and Robertson (1998). Next assume that p;; > 0 and > ipij =1
for i = 1,2,...,r. This is row product multinomial model. Unfortunately, we
have been unable to find an explicit form of maximum likelihood estimate under
restriction (1.1). The Poisson model assumes that each observation in a cell is
distributed as Poisson distribution with mean A;; > 0. If we assume the number
of observations - sample sizes are the same for all cells, we can use the estimation
procedure for a single multinomial model with minor modification. But we were
unable to find restricted maximum likelihood estimate if the assumption of equal
sample sizes is relaxed.
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