발화합성법에 의한 $YBa_{2}Cu_{3}O_{7-x}$-Ag 복합 초전도체 제조

Fabrication of $YBa_{2}Cu_{3}O_{7-x}$-Ag Composite Superconductors by Pyrophoric Synthetic Method

  • 양석우 (전북대학교 화학공학과) ;
  • 김찬중 (한국원자력연구소 기능성재료연구팀) ;
  • 홍계원 (한국원자력연구소 기능성재료연구팀) ;
  • 신형식 (전북대학교 화학공학과)
  • Yang, Seok-U (Department of Chemical Engineering, Chonbuk National University) ;
  • Kim, Chan-Jung (Superconductivity Research Laboratory, Korea Atomic Energy Research Institute) ;
  • Hong, Gye-Won (Superconductivity Research Laboratory, Korea Atomic Energy Research Institute) ;
  • Sin, Hyeong-Sik (Department of Chemical Engineering, Chonbuk National University)
  • 발행 : 1998.12.01

초록

$YBa_2$$Cu_3$$O_{7-y}$ (123) 초전도체에서 은 입자의 미세분산을 얻고자 말릭산을 사용한 발화합성과 고상반응법으로 123와 123-Ag 복합 초전도분말을 제조하였다. 발화합성분말을 원료로 사용할 시 마이크론 미만의 미세한 123 분말과 은 분말의 복합체를 얻을 수 있었다. 원료로 사용된 산화은($Ag_2O$) 분말은 발화합성과정 중금속 은으로 환원되었다. 원료분말에 첨가된 금속 은에 의한 반응 물질간의 확산 촉진으로 123상이 단시간내에 생성되었고 입자성장도 촉진되었다. 발화합성법으로 제조한 시편은 기계적 혼합공정으로 제조한 시편에 비해 은 입자들은 미세하게 분산시킬 수 있어서 초전도체의 임계전류밀도가 향상되었다.

To obtain fine dispersion of Ag particles in $YBa_2$$Cu_3$$O_{7-y}$ (123) superconductors, 123 samples were made by pyrophoric synthetic method using malic acid and the subsequent solid- state reaction. As the pyrophoric synthetic powder was used as a precursor material, fine 123 powder of submicron size was produced in a short reaction time. The added $Ag_2$O was converted to metallic Ag during Pyrophoric reaction and it accelerated both the formation of 123 phase and the grain growth via the enhanced mass transfer. The Ag particles of the sample sintered using the pyrephoric synthetic powder were more finely dispersed in the 123 matrix, compared to those of the sample sintered using the mechanically mixed powder, attributing to the improvement of the superconducting properties.

키워드

참고문헌

  1. Mater. Lett. v.9 Y.Gao;Y.Li;K.L.Merkle;J.N.Mundy;C.Zhang;U.Balachadran;R.B.Poeppel
  2. J. Mater. Res. v.8 Y.Masuda;R.Ogawa;Y.Kawate;K.Matsubara;T.Tateishi
  3. Adv. Ceram. Mater. v.2 J.W.Ekin
  4. Phys. Rev. v.B36 J.A.Yarnoff;D.R.Clark;W.Drube;U.O.Karlson;A.Taleb-Ibrahimi;F.J.Himpsel
  5. J. Cryst. Growth v.85 S.Nakahara;G.J.Fisanick;M.F.Yan;R.B.van Dover;T.Boone;R.Moore
  6. J. Amer. Ceram. Soc. v.72 D.R.Clark;T.M.Shaw;D.Dimos
  7. J. Mater. Res. v.4 J.E.Ullman;R.W.McCallum;J.D.Verhoeven
  8. J. Mater. Res. v.4 T.L.Aselage;Keefer
  9. Physica C T.L.Aselage
  10. Mater. Sci. Eng. v.B39 C.J.Kim;K.B.Kim;I.H.Kuk;G.W.Hong
  11. Physica C v.255 C.J.Kim;K.B.Kim;I.H.Kuk;G.W.Hong
  12. Mater. Lett. v.21 D.H.Chen;T.W.Liu;J.Cc.Huang;C.H.Cheng;C.T.Chang;S.R.Sheen;T.C.Wang;M.K.Wu
  13. Physica C v.53 A.Bhargava;I.D.R.Mackinnon;Toru Yamashita;D.Page
  14. Jpn. J. Appl. Phys. v.27 N.Tohge;M.Tatsumisago;T.Minami;K.Okuyama;M.Adachi;Y.Kousaka
  15. Mater. Sci. v.30 C.H.Chao;P.D.Owinby
  16. J. Phys. D: Appl. Phys. v.21 D.H.Blank;H.Kruidhof;J.Flokstra
  17. J. Appl. Phys. Lett. v.57 D.Bhattacharya;L.C.Pathak;S.K.Mishra;D.Sen;K.L.Chopra
  18. Physica C v.204 S.H.Shieh;W.J.Thomson
  19. Mater. Sci. Lett. v.8 N.E.Khokh;R.Papiernik;L.G.Hubert-Pfalzgraf;F.Chaput;J.P.Boilot
  20. J. Mater. Res. v.7 Y.Masuda;R.Ogawa;Y.Kawate;K.Matsubaram;T.Tateishi;S.Sakka
  21. Appl. Phys. Lett. v.52 T.T.Kodas;E.M.Engler;V.Y.Lee;R.Jacowitz;T.H.Baum;K.Roche;S.S.P.Parkin;W.S.Young;S.Highes;J.Kleder;W.Auser
  22. Japan. J. Appl. Phys. v.29 Y.Kimura;T.Ito;H.Yoshikawa;T.Tachiwaki;A.Hiraki
  23. J. Mater. Res. v.7 L.S.Yeou;K.W.White
  24. J. Appl. Phys. v.70 F.Yeh;K.W.White
  25. J. Appl. Phys. v.71 J.Joo;J.P.Singh;R.B.Poeppel;K.Gangopadhyay;T.O.Mason
  26. J. Appl. Phys. v.66 J.P.Shingh;H.L.Leu;R.B.Poeppel;E.V.Voorhees;G.T.Goudey;K,Winsley;D.Shi
  27. Physica C v.168 A.Goyal;S.J.Burns;P.D.Funkenbusch
  28. Mater. Lett. v.7 T.H.Tiefel;S.Jin;R.C.Sherwood;M.E.Davis;G.W.Kammlott;P.K.Gallagher;D.W.Johnson,Jr.;R.A.Fastnacht;W.W.Rhodes
  29. J. Am. Ceram. Soc. v.77 W.Wong-Ng;L.P.Cook
  30. J. Am. Ceram. Soc. v.71 J.J.Rha;K.Y.Yoon;S.J.L.Kang;D.N.Yoon
  31. Adv. Ceram. Mater. v.2 P.K.Gallagher
  32. Jpn. J. Appl. Phys. v.29 J.J.Lin;T.M.Chen;Y.D.Yao;J.W.Chen;Y.S.Gou