PVD 방법에 의한 $TiN/TiSi_2$-bilayer 형성

Formation of $TiN/TiSi_2$-bilayer by PVD method

  • 최치규 (제주대학교 물리학과) ;
  • 강민성 (제주대학교 물리학과) ;
  • 김덕수 (제주대학교 화학과) ;
  • 이광만 (제주대학교 전자공학과) ;
  • 황찬용 (한국표준과학원 소재특성평가센터부) ;
  • 서경수 (한국전자통신연구원 반도체연구단) ;
  • 이정용 (한국과학기술원 전자재료공학과) ;
  • 김건호 (경상대학교 물리학과)
  • Choe, Chi-Gyu (Department of Physics, Cheju National University) ;
  • Gang, Min-Seong (Department of Physics, Cheju National University) ;
  • Kim, Deok-Su (Department of Chemistry Cheju National University) ;
  • Lee, Gwang-Man (Department of Electronic Engineering, Cheju National University) ;
  • Hwang, Chan-Yong (Materials Evaluation Center, Korea Reserch Institute of Standards and Science) ;
  • Seo, Gyeong-Su (Semiconductor Technology Division, Electros and Telecommunications Research Institute) ;
  • Lee, Jeong-Yong (Department of Electronic Materials Science, Korea Advanced Insitute of Science and Technology) ;
  • Kim, Geon-Ho (Dept. of Physics, Gyeongsang National University)
  • 발행 : 1998.12.01

초록

Si 기판을 실온과 $600^{\circ}C$로 유지하면서 동시 증착 방법으로 (Ti+2Si)를 증착한 후 $N_2$ 분위기에서 Ti를 증발시켜 TiN($300\AA$)/(Ti+2Si, $300\AA$)/Si(100) 구조의 시료를 제작한 다음 초고진공에서 in-situ로 열처리하여 양질의 $TiN/TiSi_2$-bilayer를 형성하였다 열처리 온도가 $700^{\circ}C$ 이상에서 (111) texture 구조를 가지면서 화학 양론적으로 $Ti_{0.5}N_{0.5}$인 박막과 C54-$TiSi_2$박막이 형성되었다. $TiN/C54-TiSi_2/Si$ (100)구조의 계면은 응집 현상이 없이 평활하였으며, $C54-TiSi_2$상은 에피택셜 성장되었다. $TiN/TiSi_2$-이중구조막의 면저항은 열처리 온도에 따라 감소하였으며, $700^{\circ}C$ 이상의 열처리 온도에서는 면저항 값이 $2.5\omega/\textrm{cm}^2$ 였다.

High quality $TiN/TiSi_2$-bilayers were formed on the Si(100) substrate at room temperature and at $600^{\circ}C$ first by coevaporation of stoichiometric Si and Ti(Si:Ti = 2:1) fellowed by Ti reactive deposition in N, gas ambient, and in situ annealing in ultrahigh vacuum. Stoichiometric $Ti_{0.}N_{0.5}$, films with (111) texture and $C54-TiSi_2$ films were grown by annealing at temperatures above $700^{\circ}C$. $TiN/C54-TiSi_2$/Si(100) interface was clear and flat without agglomoration, and $CS4-TiSi_2$ film was epitxailly grown. The sheet resistance of the $TiN/TiSi_2$- bilayer decreased as the annealing temperature increased and about $2.5\omega/\textrm{cm}^2$ was obtained from the sample annealed over $700^{\circ}C$.

키워드

참고문헌

  1. Silcide for VLSI Application S.P.Muraka
  2. IEEE Trans. Electron Device v.ED-32 no.2 M.E.Alperin;T.C.Hollaway;R.A.Haken;C.D.Gosmeyer;R.V.Karnaugh;W.D.Paramantice
  3. IEEE Trans. Electron Device v.ED-27 J.S.Muraka;D.B.Fraser;A.K.Sinha;H.J.Levinstein
  4. The crystal chemistry and physics of metals and alloy W.R.Pearson
  5. J. Appl. Phys. v.62 T.C.Chou;K.N.Tu
  6. Appl. Phys. Lett. v.47 M.S.Fung;H.C.Cheng;L.J.Chen
  7. Appl. Phys. Lett. v.63 C.K.Choi;S.J.Yang;J.Y.Ryu;J.Y.Lee;H.H.Park;O.J.Kwon;Y.P.Lee;K.H.Kim
  8. J. Crystal Growth v.115 C.K.Choi;H.H.Park;J.Y.Lee;K.I.Cho;M.C.Paek;O.J.Kwon;K.S.Nam;S.J.Yang
  9. Mater. Res. Soc. Symp. Proc. v.260 R.J.Nemanich;H.T.Jeon;C.A.Sukow;J.W.Honeycutt;G.A.Rozgonyi
  10. J. Electrochem. Soc. v.133 C.Y.Ting;F.M.d'Heurle;S.S.Iyer;P.M.Fryer
  11. Vacuum v.40 P.Panjan;B.Navinsek;A.Zabkar;M.Godec;Z.Krivokapic;A.Zalar;B.Pracek
  12. J. Vac. Sci. Technol. B v.34 R.I.Hegde;R.W.Fiordalice;E.O.Travis;P.J.Tobin
  13. Jpn. J. Appl. Phys. v.34 J.S.Byun;C.R.Kim;K.G.Rha;J.J.Kim;W.S.Kim
  14. J. Appl. Phys. v.54 no.2 Y.Igasaki;H.Mitsuhashi
  15. J. Vac. Sci. Technol. v.A9 S.M.Rossnagal;D.Mikalsen;H.Kinoshita;J.J.Cuomo
  16. J. Electrochem. Soc. v.137 A.Sherman
  17. 한국진공학회지 v.3 최치규;류재연;오상식;염병렬;박형호;조경익;이정용;김건호
  18. 한국진공학회지 v.6 최치규;강민성;박형호;염병렬;서경수;이종덕;김건호;이정용
  19. J. Electronic Materials v.22 C.J.Lee;Y.K.Sung
  20. J. Appl. Phys. v.57 R.Beyers;R.Sincliar
  21. J. Appl. Phys. v.60 van Houtum;I.H.J.Wu;J.M.M.Raaijmakers;T.J.Menting
  22. Backscattering Spectrometry W.K.Chu;J.W.Mater;M.A.Nicolet
  23. J. Vac. Sci. Technol. v.B6 M.F.C.Willemsen;A.E.T.Kuiper;A.H.Reader
  24. J. Vac. Sci. Technol. v.B11 no.4 R.I.Hegde;R.W.Fioralice;E.O.Travis;P.J.Tobin
  25. J. Electrochem. Soc. v.138 N.Yokoyama;K.Hinode;Y.Homma
  26. Acta Metall v.7 W.W.Mullins;P.G.Shewmon