THesegt 5 2048 # 488 19984 114 177

YeT(

X

>
3.

A

i

Systems Modular Approach For Design
and Analysis of Object Oriented Simulation Software

ARNAG ANBelold 2EZEdole] 47 B 2AL @
Ned B gy BR A7

Yoo, Wang Jin*
% 22

Lim, Ik Sung#**
9 o4

Kim, Tae Sung**
Z A

8 A
HZ7A AL ABYolA AZEMAE HE AT F AEHA &
o] ARAL soteEtr) et FAHA ABEYOA RdE AR o, ANEHOHE AZE
Aol faAe tE 29e A2l REA HI AHE 3o FH
g agln AZEYo] Aadue] BAE AT A AJBEH)H &L=
ZHE = flexibility®d accuracy@e Aol ¥ A ARG AlEdH ol LAEZEY o9 metrics

o formalisme] 22E Ao, oRe 42T AANLH AP LZEs Tz
g OAQsEd 2R PR ANSG Boz QoA ALY U 722 HAT AAA

= o de §

= R E

4 B 2ZESo] Alade EASHT
1. Introduction

In order to meet the user's demands, varieties of simulation software have been
continuously developed from the late 1950’s. Currently, the number of simulation languages
(including academic and commercially available) are known to over 140 [16]. Basically,
there are two types of simulation softwares (or languages in a broad sense): (i) Discrete
event simulation model and (ii) Continuous simulation model [12, 14, 19].

1.1 Overview of simulation languages

Discrete event models are described by logic, rules and procedures. These
languages include GPSS, ARENA/SIMAN IV, SLAM I/TESS, Simula, GEMS-II, CVASD,
INSIGHT, and SIMSCRIPT 1II [15]. Continuous simulation model concerns the modeling of
systems over time by representing state variables changes continuously. In continuous
simulation, models are usually described by difference/differential equations. Some of these
languages include Extend, Model-it, SIMULAB, MATLAB, STELLA, DYNAMO, CSMP,
ACSL, MDOF, PIPEPHASE, TPS, GVS, TUTSIM, SIMNON, DARE, Modeller, MATRIX,
ESL, GEMS, ECAP, and PCAP [10,12,17,19).

* Kon-Kuk University, Dept. of Industrial Engineering
+* Namseoul University, Dept. of Industrial Engineering

dold 2EENS A R BAT A% N2y REY

However, since real systems under consideration are neither completely discrete nor
completely continuous, models are needed that combine discrete event and continuous
models. Thus, the combined discrete event and continuous languages were developed in
order to provide more power (note: power indicates the ability of simulation software to
build an arbitrary model). These include WITNESS, Extend, DEVS-Scheme,
ARENA/SIMAN IV, COSY, ModSim II, SYSMOD, PCModel, HOCUS, SLAM II, DISCO,
GASP IV, COSMOS, CLASS, PROSE, CDCSIS, NEDIS, and GSL [1,2,5,13,15,21,16].

In order to reduce the user’'s effort for building a model, simulators, advertised as
"no-programming required” or “ease-to-use” were developed. These simulators
{(sometimes called Special Purpose Simulation Software or application oriented simulation
languages) include BETHSIM, SmartSim, XCELL+, WITNESS, QUEST, Micro Saint,
COMNET, Net Work II, MAP/1, MAST, Speed, See-Why, Modelmaster, BONeS, FACTOR,
INSIGHT, JR-net, SimFactory, SIMPLE++, AutoMod, ProModel, and TAYLORI [1,15, 22,
24].

Since then, there have been trends towards object orientation due to the number of
benefits of object oriented languages. The advantages of using object-oriented languages
such as Eiffel, Smalltalk, Simula, C++, and Objective-C can be found from Najmi [20, 25].
The object-oriented simulation languages include SmartSim, Sim++, SIMPLE++, CSIM, MB,
SimKit, SimPack, Ross, INSIGHT, ConSim, Extend, DISCO, ModSim II, and DEVS-Scheme
(5, 6, 7, 16, 18, 23, 25, 271.

Simulation software has been successful in satisfying the users to some degree.
However, there is always a trade-off between power and ease-of-use in simulation
software. For example, the commercially available simulators allow the user to build a
domain specific model with ease-of-use but less capability to build different domain
models. On the other hand, the general purpose simulation software allows the users to
build a wide range of domain models, which is called power, but it requires more effort
than the simulators.

The main reason for the existence of trade-off is due to the fact that simulators
are designed for particular domain problems. However, in fact, the user’s environment is
constantly changing. For example, if the modeler wants to model a different domain
problems, then the modeler has to devote significant effort to build a different domain
model. Therefore, a major issue becomes maintaining the ease-of-use while increasing
the power. The clue to the solution of this problem can be found in the concept of
"flexibility’, which has been used in the manufacturing systems area. Simulation software
flexibility can be thought as "the ability of simulation software systems to respond to
changing requirements.”

2. Analysis of object oriented simulation software

Real systems under study cover a wide range of sizes, structures, and behaviors.
For different types of real systems, the modeler needs to build a models to satisfy the
different system requirements. Therefore, according to the concept of flexibility, flexible
simulation software systems should allow the modeler to model the different system
requirements with minimal effort.

CEpemmast F 2148 4 484 19984 11)] 179

2.1 Definitions

Terminology and definitions used in this reseswch may be somewhat different from
those used by other researchers so they need to be clearly explained.
+ Entity (ENT) is an object engaged in activities and characterized by its data values
called attributes. It also has relationship(s) and behavior(s).

% Structure(STR) is the arrangement of relationships between modules. Therefore, it is
composed of modules and relationships.

*x Behavior (BHR) describes the possible actions of an entity through its activities. In a
sense, behavior can be considered to a modular, module so that several actions can be
grouped into higher level activities.

* Attribute (ATT) describes the state of an entity whose characteristics are expressed via
data values.

* Relationship (REL) constitutes “awareness” by one entity of another (the related entity).

* Interface (IRF) is a channel through which other entities can communicate with an
entity. It contains constraints such as data types and acceptable data values that can be
communicated.

2.2 View of object oriented simulation model

Based on the above definitions and terminology, a simulation model can be viewed
as shown in Figure 1. A simulation model is composed of structure and behavior.
Structure is composed of relationships and entities, and entities have relationships, behavior
and data. Behavior of entities can be described by either logical constructs and/or
differential equations using operators/operands. The former case is usually called discrete
event model and the latter is called a continuous model. Two different types of entities
can be present in a model. A permanent entity is always present in a model, while a
transient entity is dynamically created and then destroyed during a simulation study.

mam i3 composed of - typeof -— s

Figure 1. A generic view of simulation model.

180 & 23 -2 A4 -7 B4 AAXG ABYM AxEdold 4A F BHS AF A2d 254
Wrogyol B o

3. Formalism and metrics of object oriented simulation software

A real system of class c is expressed as Sc which is composed of modules.

S. = { M'i } , where, M'i is a set of modules which are the real system’s
component objects. Furthermore, Sc has certain modeling requirements (RQ) which include
the type of structure and behaviors in such systems. The modeling requirements of a
system of class ¢ is expressed as RQ(S.).

A modular module Mi , object oriented, has behaviors BHR, relationships REL,
attributes ATT, and interfaces IRF.

Mi = < BHR, REL, ATT, IRF >

A simulation model of a class c system is expressed as SMc, and is composed of
modules Mi.

SM. = { (M, Ma,..., M)l i€ integer }

A simulation software system for modeling class ¢ systems, SS., is configured to
produce SM. in order to meet RQ(S.) with as much ease-of-use as possible as well as
accuracy relative to S.. SS: can be thought as a collection of functionality for
transforming and modeling the real systems. Thus, SSc has a set of transformation(TMF;)
and modeling functions for abstracting a conceptual model of Sc into a computer simulation
model (SMc). The performance measure for SSc is accuracy (how close to the real
system during logical modeling: fi) and ease-of-use (the effort to build a model: f2). The
relationship of the real system, simulation model, and simulation software system is shown
in the

] R
O logical | L]]

modeling.f; eomputer

RO(S,) .
modeling;f; SM,
SS. (Simulation performance eﬁergy:
S (real system of class c) software) ease-of-use and accuracy

Figure 2. Relationship of real system, model, and simulation software

3.1 Within a domain user group

As a user uses a particular simulation software system, all required building blocks
(or modules in technical! terms) are assumed to be present for a certain class of models.
This is considered to be steady state performance of SS. Therefore, ease-of-use and

THgegRast B 214 5 488 19984 115 181

accuracy are the performance measures for evaluating the steady state use of SS.. The
effort required to build the different instances of SM. involves only addition and/or deletion
of modules followed by modification of the data values in the modules. The following
notations are used to illustrate the flexibility concept and analysis in simulation software
systems under steady state use.

Notations:
M;: the i module in a model, i =1 to TM
RELi;: Relationship from module i to module j.
ATT: the k™ attribute in the i" module, k =1 to P
BHR;;: the 1™ behavior in the i™ module, 1 =1 to Q
IRFim: the m" interface point in the i module, m =1 to S
DAT;a the dt™ data in i module, d: =1 to V
Let f(X) denote the effort required for the user to perform a task X in the process
of transforming and modeling, and consider that there may be an initial model to be used
for creating a new model.

x User's effort to select module a and add it to a model: Ao ;)

User's effort to select module r and remove it from an existing model: Ao ;)

* User’s effort to change data for the i'" module in the model: , where V is the number of
data entries to be changed in the i™ module. Thus, the total effort required for the user
to build a new model of the system within a domain user group can be expressed as

21]‘(0 T 21 Zl, A DAT ; 4+ 2}0f(o ;) where A is the total number of modules to

be added, R is the total number of modules to be removed from the model, N is the total
number of modules whose data need to be changed. From the user’s point of view, the
effort to build a model is a function of the number of modules in the simulation model
SM. and complexity of each module M;

3.2 Different domain user groups

As a user attempts to build different classes of systems, due to performance
mismatches, all required building blocks may not be available. Therefore, a SS. developer
may need to reconfigure the simulation software system from SS. to SS¢.1. Therefore, the
consideration should be based on the developer’'s perspective and the effort to reconfigure
SS. is the performance measure for evaluating changing requirements of the system. This
reconfiguration effort involves adding/modifying relationships (REL), attributes (ATT),
behaviors (BHR), and interfaces (IRF) for the building blocks. Once the SS. is
reconfigured, the environment is considered to be stable until another reconfiguration
occurs. This process is repeated as often as necessary.

When a change occurs, SS. is reconfigured to form SSc.1, the effort to reconfigure
SS. depends on the level of flexibility available in SSc. The effort to reconfigure SS.
requires the following steps: conceptualizing the modules that are required to build a new
class of systems, creating modules (if a similar module does not exist) or modifying
behaviors (if a similar behavior exists), and configuring the modules.
Step 1: Create modules.

182 & 2209 A4 - W WA AAAY AR 2EEolg A R BHS AV ALY wFY
Hirgol B 4

Modeler will face two different processes in order to create modular modules.

Case 1: If similar modules are present in the simulation software system, then the
effort involves modification of BHR, IRF, and ATT. Equation (3.1), (3.2), and (3.3) shows
the effort required to modify BHR, IRF, and ATT respectively.

3 gf(BHR ;oo 3.1)

Where, Q is the total number of behaviors to be built into the ith module, and EM
is the number of modules involved.

giggmem) ... (3.2)

Where, S is the total number of interfaces to be changed in the i™ module, and
EM is the number of modules involved.

g}k

Where, P is the total number of attributes to be changed in the i

) FOATT 0 (33)

th
module, and

EM is the number of modules involved.
Case 2! If modules are not available in the existing software system, then new
modules must be built. Effort to build new modules can be expressed as equation (3.4).

S M) e (3.4)

=h
Where, NM is the number of new modules to be built. (Note: A new module
consists of proper BHR, IRF, and ATT)
In both cases (case 1 and 2), the developer will go through the cycle of compile
and link process. Thus, the total effort to create new modules can be expressed as

equation (3.5). EM

NM M S EM P
7 Y rMy + Z if(BHR.-.:)+ > Zf(IRF'v"') + Z Zf(Am"‘)] (35)

o L = bt L™ T
Step 2: Configuration gtl modules '(Ii.é.,l establishing Irlelatilonships between modules)
Effort to make relationships can be expressed as equation (3.6).
5 B (36)
Where, TM 1is the total number of modules involved in a model. Therefore, the
total effort to reconfigure the SSc for a changing environment is a summation of all above

equations. Thus, the total effort to reconfigure SS. can be expressed as equation (3.7).
A8 r00+ § 3 r@rrie $ 3 rurna +
o r e ==
g .-‘f(Am,n)]+Z f(RELl'/) ...

-t

The above equation (3.7) is a measure of simulation software flexibility. To design
a flexible simulation software architecture, the total effort to reconfigure SS. should be
made as small as possible. In other words, the objective of the design of flexible object
oriented simulation architecture is to minimize the equation (3.7).

THEmaG F 214 5§ 488 1998% 11H 183

4. Concluding remarks

The classification of simulation languages to date is summarized. Historically,
there has heen a trade-off between ease-of-use and power. Simulation software flexibility,
a new concept, is introduced, which addresses the problem of balance between power and
ease of use. A systems modular approach is used for the analysis and design of both the
simulation model and object oriented simulation software. The importance of the new
concept, flexibility, in object oriented simulation software is described., followed by the
development of formalism, and metrics for object oriented simulation software. According to
the metrics developed, it is shown that the modeler can build any arbitrary model with
less effort by using flexible simulation software.

References

(1] AutoMod, Auto Simulations Inc., Bountiful, Utah, 1994.
(2] Belanger, R. and A. Mullarney, ModSim II Reference Manual, CACI Products Company,
La Jolla, CA., 1990.
[3] Cellier, Francois E., "Combined Continuous/Discrete Simulation Applications, Techniques,
and Tools,” Proc. of the 1986 Winter Simulation Conference, pp.24-33.
[4] Choi, Byung K. et al. "Object-Oriented Graphical Modeling of FMSs,” The Int. J. of
FMS, Vol,, 8, 1996, pp.159-182.

[5] Croockes, J.G. , "Simulation in 1991 - Ten vears on,” European Journal of Operations
Research Vol. 57, 1992, pp. 305-308.

[6] Diamond, Bob, "EXTEND: A Library-Based, Hierarchical, Multi- Domain Modeling
System,” Proc. of the 1993 Winter Simulation Conference, pp.240-248.

[7] Fishwick, Paul A., “SimPack: Getting Started With Simulation Programming In C and
C++," Proc. of the 1992 Winter Simulation Conference, pp.154-162.

[8] Frazelle, E. H., "Flexibility: A Strategic Response in Changing Times,” Industrial
Engineering, Mar., 1986, pp.17-20.

[9] Helsgaun, K., "DISCO- A Simulation Based Language For Combined Continuous and
Discrete Sirnulation,” Simulation, Jul., 1980, pp.1-11.

[10] Huang, Barney K. Computer Simulation Analysis of Biological and Agricultural
Systems, CRC Press Inc., 1994, pp.147-155.

[11] Jackman, John and D. J. Medeiros, "A Graphical Methodology for Simulating
Communication Networks,” IEEE Transactions on Communications, Vol. 36, No. 4, 1988,
pp.459-464.

[12] Karayanakis, Nicholas M. Computer-Assisted Simulation of Dynamic Systems with
Block Diagram Languages, CRC Press Inc., 1993, pp. 2-7.

[13] Kettenis, Dirk L., “"COSMOS: A Simulation Language for Continuous, discrete and
Combined Models,” Simulation, Jan., 1992, pp 32-41.

[14] Law, Averill M, and W. Kelton, Simulation Modeling and Analysis, McGraw Hill Book
Co., New York, 1982.

[15] Lim, Ik Sung, Design of A Flexible Unified Object-Oriented Simulation System
Architecture, Ph.D. Dissertation, 1996, Wayne State University, Detroit, Michigan

[16] Lomow, Greg and Dirk Baezner, “A Tutorial Introduction to Object-Oriented

184 & 249 olg - By AANE ABdold axedelsl 4 L BAS AR AsW wEA
gl 3 97

Simulation and Sim++,” Proc. of the 1991 Summer Computer Simulation Conference,
pp.1165-1170.

(17] Luker, Paul A., Modeller: Computer-assisted modelling of continuous systems, May,
1984, Simulation, pp.205-214.

[18} Mejabi, O. O., "Object-Oriented Simulation Using Model Builder,” Proc. of the 1993
Winter Simulation Conference, pp.303-307.

[19] Nance, R. E., "A History of Discrete Event Simulation Programming Languages,” ACM
SIGPLAN Notices, Vol. 28, No.3, 1993, pp.149-175.

{20] Najmi, Adeel and S. Stein, "Comparison of Conventional and Object-Oriented

Approaches For Simulation of Manufacturing Systems,” IIE Integrated Systems
Conference and Society for Integrated Manufacturing Conference Proceedings, 1989, pp.
471 - 476. :

[21] Pegden, C. and Deborah A. Davis, "ARENATM: A SIMAN/CINEMA- Based
Hierarchical Modeling Systems,” Proc. of the 1992 Winter Simulation Conference,
pp.390-399.

[22] Silverman, D. and M. Stelzner, "SIMKIT++ Knowledge-Based Simulation Tools,” In:
Knowledge Systems’s Paradigms, North-Holland Co., 1989, pp.189-196.

[23] Simple++ User's manual, Optimization of Systems and Business Process, AESOP,
Aug., 1995

[24] Taylor I User’s manual, 1995, F& H Simulations Inc.

[25] Ulgen, Onur M. and Timothy Thomasma, “SmartSim: An Object Oriented Simulation
Program Generator for Manufacturing Systems,” Int. J. of Production Research, Vol.28,
No.9, 1990, pp.1713-1730.

[26] Wu, B. Manufacturing Systems Design and Analysis, Chapman & Hall, 1992,
pp.216-226.

[27] Zeigler, B. P., Object-Oriented Simulation with Hierarchical Modular Models Intelligent
Agents and Endomorphic Systems, Academic Press Inc., 1990.

