A Study on Image Recognition using Enhanced ART1 Algorithm

개선된 ART1 알고리즘을 이용한 이미지 인식에 관한 연구

  • 천두억 (부산 화명초등학교) ;
  • 윤성호 (부산과학고등학교) ;
  • 김광백 (신라대학교 공과대학 컴퓨터정보공학부)
  • Published : 1998.10.01

Abstract

As time goes on, that becomes an issue still more for truth from error of a seal in electronic settlement , or in important document in the field of image recognition. But on the other hand image treatment method of a seal have has the weakness until now. It makes indistinct distinction of part that light and darkness is changed sharply as the edge of things. So it has difficult that edge detection is extracted. In this paper, I investigated the pixel in a specific area by using enhanced smothing method and searched a value of frquent occurrence. The value of pixel is substituted and edge detection is extracted. After then it could be classified rightly according as viligence test is dynamically changed. I applied conventional of Yager's generated intersection operator among fuzzy logic operator in ART1 learning Algorithm. Application of suggested ART1 learning algorithm, it results in improved image recognition rate than a case of using the conventional ART1 algorithm

이미지 인식 분야에 있어서 전자 결재시 도장의 진위 문제와 은행업무 또는 중요서류에 있어서의 도장 진위 문제는 점점 더 중요하게 부각되고 있는데 반해 기존의 도장 이미지 처리 과정은 물체의 테두리 부분과 같이 명암도가 날카롭게 변하는 부분의 선명도를 흐리게 하는 단점이 있으며 윤곽선을 추출하는데 어려움이 많다. 본 논문에서는 개선한 평활화 방법을 이용하여 특정한 범위내의 픽셀을 조사하여 가장 빈번히 나타나는 값을 찾고,그 값을 해당 픽셀의 값으로 대체시켜 윤곽선을 검출한 다음, ART1 학습 알고리즘에서 경계값을 퍼지 연산자중 Yager의 일반화된 교연산자를 적용하여 경계변수값을 동적으로 변화시켜 올바른 분류가 될 수 있도록 한다. 본 논문에서 제안한 ART1학습 알고리즘에 적용하여 실험한 결과 기존의 ART1 알고리즘을 이용한 경우보다 향상된 이미지 인식율을 보였다.

Keywords