Projective Objects in the Category of Compact Spaces and ${\sigma}Z^#$-irreducible Maps

  • Published : 1998.12.01

Abstract

Observing that for any compact space X, the minimal basically disconnected cover ${\bigwedge}Λ_X$ : ${\bigwedge}Λ_X{\leftrightarro}$ is ${\sigma}Z^#$-irreducible, we will show that the projective objects in the category of compact spaces and ${\sigma}Z^#$-irreducible maps are precisely basically disconnected spaces.

Keywords

References

  1. Abstract and concrete categories Adamek, J.;Herrlich, H.;Strecker, G.E.
  2. General Topology and its relation to Morden Analysis and Algebra II Projective convers in certain categories Banashewski, B.
  3. Canad. J. Math. v.28 Spaces in which special sets are Z-embedded Blair, R.L.
  4. J. Math. v.2 Projective topological spaces, III Gleason, A.M.
  5. Trans. Amer. Math. Soc. v.303 Quasi-F-covers of Tychonoff spaces Henriksen, M.;Vermeer, J.;Woods, R.G.
  6. Sov. Math. Dokl. v.4 Absolute of Hausdorff spaces Ilisadis, S.
  7. Topol. Appl. v.72 Minimal covers and filter spaces Kim, C.I.
  8. Extensions and Absolutes of Hausdorff Spaces Proter, J.;Woods, R.G.
  9. Topol. Appl. v.17 The smallest basically disconnected preimage of a space Vermeer, J.