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Abstract Rapid and quantitative analysis of physiological
change and clavulanic acid production was studied by the
combination of pyrolysis mass spectrometry (PyMS) and
artificial neural network (ANN) in Streptomyces clavuligerus.
Firstly, the continuous culture studies were carried out to
get the physiological background and PyMS samples.
Clavulanic acid production was inversely related to growth
rate: Mycelium growth and g, were optimum at 0.1 h” and
0.025 h', respectively. Changes in specific nutrient uptake
rates (g, and gq,,,) also affected clavulanic acid production
since clavulanic acid production appeared to be stimulated
by the limitation of carbon and nitrogen. Fermentation
broth containing mycelium taken from continuous cultures
was analyzed by PyMS, and the PyMS spectra were analyzed
with multivariate statistics. PCCV plots revealed that samples
harvested under the same culture condition were clustered
together but samples from different culture conditions formed
separate clusters. To deconvolute the pyrolysis mass spectra
s0 as to obtain quantitative information on the concentration
of clavulanic acid, ANN was trained on PyMS data using
a radial basis function classifier. The results showed
that the physiological stages with different growth rate were
successfully differeniiated and it was possible to monitor
the clavulanic acid production precisely and rapidly.
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Streptomycetes are of interest because of their ability
to produce various unique metabolites (physiological
differentiation). The onset of the metabolite production is
always accompanied with morphological differentiation
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that is characterized by the formation of a substrate
mycelium, an aerial mycelium and arthrospores [3]. Since it
is not easy to determine the physiological differentiation
state quantitatively, quick and precise methods for the
determination of differentiation would be very useful for
the optimization of the metabolite production.

Pyrolysis mass spectrometry (PyMS) has been used as
a useful technique for the analysis of complex organic
materials, natural biological products [7, 8, 19, 20], and
for the rapid and quantitative analysis of bioprocesses [7,
8]. The method is rapid (the typical sample time is less
than 2 min) and can be automated. We therefore considered
that PyMS might be a suitable method for monitoring the
physiological condition and secondary metabolite production.
Pyrolysis is the thermal degradation of a complex material
in a vacuum. It causes molecules to cleave at their weakest
point to produce smaller, volatile fragments - the pyrolysate
[11]. A mass spectrometer can then be used to separate
the components of the pyrolysate on the basis of their mass
to charge ratio (m/z) to produce a pyrolysis mass spectrum.

The technique produces large amounts of complex
experimental data in the form of mass spectra which
qualitatively and quantitatively represent the initial sample
composition. Therefore, suitable numerical methods should
be employed to understand the complex spectra, and
principal component analysis (PCA) and canonical
variate analysis (CVA) are two multivariate statistical
techniques which are commonly used in the analysis of
such data. Recently, to deconvolute the PyMS spectra,
artificial neural networks (ANNSs) are an increasingly
well known means of uncovering complex, nonlinear
relationships in multivariate data, while still being able
to map the linear relationship. ANNs can be considered
as collections of very simple computational units which
can take a numerical input and transform it into specific
output. Provided the ANN is trained on representative
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data from the system analyzed, like PyMS data from
microbial samples, it can produce a generalized solution.
Their application is well researched and new uses are
being developed all the time [14]. The combination of
PyMS and ANNs has proved to be very powerful in the
identification of microorganisms [4, 6] and in rapid
screening and the quantitative analysis of metabolite that
has been overproduced in fermentor broths [9, 10].

In this work, the effects of growth rate and nutrient
feed rates (carbon or nitrogen) on clavulanic acid production
in Streptomyces clavuligerus were evaluated and the
physiological differentiation of the culture were analyzed
by the combination of PyMS and ANNs.

MATERIALS AND METHODS

Microorganism and Media

Streptomyces clavuligerus ATCC 27064 was used. Stock
culture medium consisted of (w/v): 1% glucose, 0.2%
peptone, 0.3% yeast extract, 0.1% beef extract and 1.8%
agar. Seed culture medium consisted of (w/v): 1% glycerol
and 1% yeast extract. The carbon limited medium for the
continuous culture consisted of (w/v); 0.4% glycerol, 0.1%
NH,, 02% KH,PO, 0.005% MgSO,-7H,0, 0.005%
FeSO,- 7H,0, 0.005% CaCl,-2H,0 and 0.005% MnCl,-
4H,0, ZnCl, 0.005%. In the nitrogen-limited culture, 0.7%
glycerol and 0.05% NH,Cl were used as carbon and
nitrogen sources. The initial pH of the media was
adjusted to 7.0 before steam sterilization. Phosphate and
other salts were separately sterilized by membrane filtration
(0.2 um, Millipore, U.S.A.) and added asceptically.

Strain Maintenance and Culture Conditions

Strains were maintained by transfer to slopes of the stock
culture medium each month, and were stored at 4°C. For
solid cultures, one loopful of spores were inoculated
evenly on the main agar culture medium and incubated
at 28°C. For submerged culture, spores developed on the
stock culture medium were inoculated to 100 ml of the
seed culture medium and incubated at 28°C for 2 days.
The seed culture (300 ml) was inoculated to 31 of the
main culture medium contained in a jar fermentor
(Model KF-5L, Korea Fermentor Co.). The culture
temperature was maintained at 28°C and the initial pH
was controlled at 7.0. Agitation and aeration were 300
rpm and 0.5 vvm, respectively. For a continuous culture,
the seed culture (150 ml) was inoculated to 1.51 of the
main culture medium, and the carbon or nitrogen limited
continuous medium started to be fed after 2 days.

Analytical Methods
Morphological characteristics were observed with a phase-
contrast microscope (Nikon Laphot). To measure mycelium

growth, mycelium was collected by wvacuum filtration
(Whatman GF/C paper), dried at 80°C for 24 h, and
weighed. Clavulanic acid was determined using HPLC
as described by Foulstone and Reading [5]. The culture
supernatant was prepared by ultrafiltration (cut-off 5000,
Amicon, U.S.A.). The filtrates were treated with imidazole
reagent at room temperature for 20 min. The analysis
was performed with a C,; pbondapak column (Waters,
U.S.A)), and the effluents were detected at 312 nm with
an UV detector (Gilson). Potassium clavulanate (Worthing,
U.K.) was used as the standard.

The concentrations of glycerol and sucrose were
measured by HPLC with an Aminex HPX-87H cation
exchange column (Bio-Rad, Richmond, U.S.A.), using
an effluent of 0.005N H,SO, at 30°C. Effluents were
detected with an RI (Refractive Index) detector and
quantified with a Bio-Rad 3392A integrator. All peaks
were compared with those produced by authentic standard
compounds.

Fermentation Kinetic Parameters

Various kinetic parameters were analyzed with the data
obtained from continuous cultures as suggested by Pirt
[17]. =D, where u is the specific mycelium growth
rate, D is the dilution rate (h"); g,, =D (s,-5 )/ X, where
gy, 18 specific glycerol uptake rate, s, is the concentration
of glycerol in the feed medium, 5 is the steady state
concentration of glycerol (g I'), and X is the steady state
concentration of biomass (g 1), respectively; @, =D
(n,-n)/x, where g, is the specific ammonium ion uptake
rate, n, is the concentration of ammonium ions in the feed
medium, 7 is the steady state concentration of ammonium
ions (g ™, respectively; gq, =D cla/Xx, where g, is the
specific clavulanic formation rate, cla is the steady state
value of clavulanic acid; Y, = cla/X; Y, =X/ (5,-5).

Pyrolysis Mass Spectrometry
Samples (1 mi) were taken from the continuous cultures
and lyophilized, and then the samples were resuspended
with 0.1 ml saline solution (0.8%, w/v) before loading
into PyMS foil. Clean iron nickel foils (Horizon
Instruments, U.K.) were inserted into clean pyrolysis
tubes, such that 5~6 mm was protruding from the mouth
of the tube. 2 ul of the resuspended samples was
pipetted onto 530°C PyMS foils (Horizon Instruments),
and dried at 80°C for 10 min, and then the foils were
pushed into the tube using a stainless steel depth gauge.
Each culture sample was prepared in triplicate, and was
then pyrolized on the RAPyD 400 (Horizon Instruments).
The sample tube carrying the foil was heated, prior to
pyrolysis, at 100°C for 5 s. Curie-point pyrolysis was at
530°C for 3 s, and the pyrolysate entered a gold plated
expansion chamber heated to 150°C, whence diffused
down a molecular beam tube to the ionization chamber
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of the mass spectrometer. To minimize secondary
fragmentation of the pyrolysate, the ionization method
was low voltage electron impact ionization (25 ¢V). Non-
ionized molecules were deposited on a cold trap, cooled
by liquid nitrogen. The ionized fragments were focused
by the electrostatic lens of a set of source electrodes,
accelerated and directed into a quadrupole mass filter.
The ions were separated by the quadrupole, on the basis
of their mass to charge ratio, detected and amplified with
an electron multiplier. The mass spectrometer scans the
ionized pyrolysate 160 times at 0.2 s over the m/z range
of 51 to 200, in one tenth of a mass unit interval. These
were then integrated to give the unit mass. The data were
collected by an online computer.

Multivariate statistical analysis was carried out using
RAPyD software and GENSTAT [16]. The data were
normalized as a percentage of total ion count to remove
the influence of sample size. The first stage was the
reduction of the data by principal component analysis
(PCA), which is a well known technique for reducing
the dimensionality of multivariate data whilst preserving
most of the variance. Data were reduced by keeping only
those principal components (PCs) whose eigenvalues
accounted for more than 0.1% of the total variance.
Canonical variates analysis (CVA) then separated the
samples into groups on the basis of the retained PCs and
the knowledge of the appropriate number of groupings
[13]. A regression using PCs or PCCVs against clavulanic
acid concentration was performed.

The Artificial Neural Networks

The ANN algorithm used in this work was radial basis
function [1, 2, 12, 15, 18]. The ANN was programmed
and modified in Matlab using the neural network
toolbox. The input vector consists of 150 values which
represent the mass/charge ratio (m/z) counts for each
molecular weight in the range of 51 to 200 daltons. The
spectra were each normalized to their total ion count,
and these values were used as the input vectors. The
output values were encoded with clavulanic acid
concentrations of wvarious continuous cultures. The
PyMS data was divided into training, validation, and
testing data sets. The success of training was determined
with the average sum square value between desired
output vector and the predicted value [1/n+Z(desired
output vector - predicted value)’], and the final error
goal was set to 0.01. During the training, validation was
performed with the validation data set to monitor training
and avoid overtraining of the neural networks.

Radial Basis Classifier (RBF)

The RBF architecture consisted of three layers, each
layer connected to the next in a feedforward manner.
The input layer is nominal in the sense that it merely

passes the values forward to the next layer. The values
received by the hidden layer are given by (|[x - ¢|||) where
x is the input matrix and ¢; is the value at the center of
each radial node. The new values are then passed
through each Gaussian node ¢(ljx - cj) as a kernel
function. Associated with the hidden to output connections
are conventional signal muitipliers: the final output
processing unit merely yields a weighted sum of its
inputs (1'). The Gaussian/kernel function is given by (2).

f@)=Ywollx-c | )
i=1
¢“x —¢; ” = 1/exp[b (x _Ci)T*(x _Ci)]w (2’)

where b is the system parameter which determines the
steepness of each kemel function. Adjustment of the
weights and bias was detertnined by minimizing the
erTor.

RESULTS AND DISCUSSION

Growth and Clavulanic Acid Production in Continuous
Cultures

Carbon limited continuous cultures of S. clavuligerus
were first used to assess the effect of growth rate on the
production of clavulanic acid. The steady-state data for
the biomass, glycerol, ammonium ion, and clavulanic
acid production in the continuous culture are shown in
Fig. 1. The culture behaved as carbon-limited condition
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biomass and (&) clavulanic acid concentrations in the continuous
culture of S. clavuligerus.
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below 0.075h'. The steady-state values of biomass
slightly increased as the dilution rate increased, but those
of clavulanic acid were inversely related to growth rate.
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The kinetic parameters calculated from the steady-state
values are shown in Fig. 2. The specific uptake rates of
glycerol and ammonium ion (gy, and q,,,) increased
with the specific growth rate. However, the specific
production rate of clavulanic acid (g,,) decreased as
growth rate increased, 0.025 h” being considered to be
optimum. These data indicated that the optimum condition
for the clavulanic acid was different from that of
mycelium growth.

Nutrient Uptake Rate and Clavulanic Acid Production
In order to distinguish the effect of the growth rate from
the nutrient uptake rates on clavulanic acid production, a
continuous culture was carried out at a fixed dilution rate
(0.04 h'") where the feed concentration of glycerol or
ammonium ions was varied. The steady-state values of
biomass and clavulanic acid concentration varied with
the feed concentration of glycerol (Fig. 3A). The kinetic
parameters calculated from the steady-state values showed
that biomass was related to glycerol feed rate while
clavulanic acid production and ¢, was inversely related
to the feed rate (Fig. 3A).

Continuous cultures, where the in-flow concentration
of ammonium ion was varied at -a fixed dilution rate of
0.04 h"', were also carried out (Fig. 3B). The steady-state
values’ of biomass increased with the feed nitrogen
concentration but those of clavulanic acid decreased. The
clavulanic acid production was optimum at a feed
ammonium concentration of 0.005g1'h’, and was
repressed at higher uptake rates (Fig. 3B). From the
results, it was evident that concentrations of glycerol and
ammonium played an important role on clavulanic acid
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production: ammonium ions were more critical to give
inhibitory effect at feed rates higher than 0.005 g I'h™.

Analysis of Physiological States in the Continuous
Culture by PyMS and Multivariate Statistics
In order to evaluate the physiological state of fermentation
and clavulanic acid production quantitatively and rapidly,
whole culture broths of S. clavuligerus were taken from
steady states of different dilution rates, and then the
whole broths were analysed by PyMS. The PyMS
spectra were very complex and varied upon the dilution
rates (Fig. 4). It indicated that components of each
sample were not identical, but changed with the dilution
rate. Figure 4C shows a difference spectrum between the
normalized averages of low dilution rate and those of
high dilution rate. The spectrum indicates that m/z 52, 53,
54, 55, 58, 59, 64, 65 and 68 were correlated with low
dilution rate state while m/z 61, 62, 63 and 74 were
related to high dilution rate state.

Since some masses appeared to be correlated with
physiological differences, all the m/z in the range of 51
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Fig. 4. Normalized pyrolysis-mass spectra of (A), low dilution
rate state; (B), high dilution rate state; (C), the difference
spectrum between the normalized average of the pyrolysis
spectra of (A) and (B). X axis is m/z values and Y axis is
normalized ion counts, respectively.
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to 200 were plotted against dilution rate in order to see
whether the PyMS spectra have suitable information on
the physiological differentiation and to select masses
more suitable. This was achieved by presenting triplicate
pyrolysis mass spectra of one mass, and then the plot
was compared with clavulanic acid production at each
dilution rate (Fig. 5). The m/z 52, 58, 64, 66 and 68
show the best match with the clavulanic acid concentration.
Interestingly, the regression of m/z 59, 61 and 62 was
not successful although the difference spectrum between
spectra from low dilution rate and high dilution rate
show that ion count values for those masses have a
notably large peak in the subtraction spectrum (Figs. 4, 5).
The results indicate that the pyrolysis mass spectra can
be used to monitor the physiological differences and
clavulanic acid production. The physiological differences
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Fig. 5. The plots of the ion counts for the m/z values
correlated with clavulanic acid production against dilution rate.
Three sets of samples are shown in the figures. X axis is dilution rate

and Y axis is normalized ion counts, respectively. The m/z values are
(A), 52; (B), 58; (C), 64; (D), 68; (E), 62; (F), 74.
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Fig. 6. PCCV plot of samples taken from steady states of
various dilution rates. (0) 0.025 h™, (A) 0.05 h’, (o) 0.075 ",
and (V) 0.1 b

involved in clavulanic acid production might cause the
difference in the PyMS spectra. In this respect, numerical
methods were employed to understand the complex PyMS
spectra to analyze the physiological differences and
clavulanic acid production.

The normalized PyMS data in the range of 51 to 200
m/z were statistically analyzed with multivariate statistics
techniques including PCA and CVA so as to discriminate
the physiological differences of Streptomyces clavuligerus.
At the first stage, the PyMS data were reduced by keeping
only those principal components (PCs) whose eigenvalues
accounted for more than 0.1% of the total variance. Five
PCs more than 0.1% of total variance were selected.
CVA then separated the samples into groups on the basis
of the 5 PCs. As a result, the PCCV plot shows that the
variates of one steady state can be separable from those
of the others (Fig. 6). From the analysis, it was evident
that the sample obtained from one condition could be
clearly distinguished from the other samples of different
conditions by PyMS, and the effects of the dilution rate
on the cellular component could also be identified.

Monitoring the Clavulanic Acid Production by PyMS
and ANN
For deconvolution of the pyrolysis mass spectra, artificial
neural networks were developed and optimized. Artificial
neural networks (ANNSs) can give a generalized solution
of the relationship between complex phenomena such as
pyrolysis spectrum, and may provide considerable advantages
in prediction against different biological backgrounds [4, 9, 10].
A feedforward ANN, radial basis classifier (RBF)
which uses a Gaussian function as the transfer function
in the hidden layer was trained with PyMS data. The

PyMS spectra taken from various dilution rate conditions
were each normalized to their total ion count, and 3 sets
of data were divided into training, validation, and testing
data sets, which in turn were used as the input vectors.
The output values were encoded with clavulanic acid
concentrations. The steepness of the Gaussian function
varied from 0.05 to 0.6, and the number of nodes in the
hidden layer also varied from 1 to 7. The final output
processing unit merely yielded a weighted sum of the
hidden layer output. As a result, the optimized structure
of RBF was determined according to the SSE values of
training and validation sets, and the optimum value for
the steepness and the number of nodes was determined
to be 0.1 and 5, respectively (Fig. 7). The final error was
0.001, and the training time was much shorter than the
backpropagation network (data not shown). The estimated
values of input vectors of training, validation, and test
sets are shown in Fig. 8. The result indicates that
clavulanic acid concentration in the whole culture broth
can be estimated rapidly and accurately by the combination
of PyMS and ANN.

The whole samples taken from the steady state in the
various ammonium feed rates (Fig. 3) were also analyzed
by PyMS, and the clavulanic acid concentration of the
samples was estimated by the trained neural network
from Fig. 7 (Table 1). The radial basis classifier gave
the reliable prediction of clavulanic acid production of
samples with different background. The estimated values
indicate that the combination of PyMS and artificial
neural network can provide the possibility to monitor
the differentiation state quantitatively in Streptomyces
clavuligerus.

Hidden layer, f,(Zw;x;) = ||1+e Zwx || 172
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Fig. 7. A radial basis classifier consisting of 150 inputs and
one output connected to each other by one hidden layer
consisting of 5 nodes.

In the architecture shown, adjacent layers of the network are fully
interconnected.
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The hollow symbols are real concentration of clavulanic acid at (O)
0.025h", (A) 0.05h”, (o) 0.075h7, and (V) 0.1 h’. The filled
symbols are estimates by trained RBC at (@) 0.025 b, (A) 0.05h”,
(m)0.075 b, and (W) 0.1 h™.

Table 1. The estimation of clavulanic acid production by
trained RBC in Streptomyces clavuligerus.

Estimates of transient samples

la 2b 3c 4d
Real estimation 10 23 3.34 1.87
Estimation by RBC 7.6 27 52 1

*"**The whole culture broths containing mycelium were taken from the
steady states of various ammonium feed rates (0.0025, 0.005, 0.01 and
0.02 g 1I'h", respectively), and then pyrolyzed. The clavulanic acid
concentration was estimated by trained RBC.

We have shown that the pyrolysis mass with multivariate
calibration and ANNs can analyze the differentiation stage
qualitatively and quantitatively in Strepfomyces clavuligerus.
Changes in culture conditions such as nutrient starvation
triggered physiological differentiation followed by
morphological differentiation in Streptomyces spp. The
differentiation gave rise to increase culture viscosity,
from which imperfect mixing and lowering in antibiotic
production resulted. Therefore, rapid and precise methods
for the determination of physiological differentiation are
necessary for the monitoring of fermentation processes,
and determining the physiological conditions.

In this work, the effect of dilution rate, and nutrient
concentration in the feed (carbon or nitrogen) on clavulanic
acid production in Streptomyces clavuligerus were evaluated
and the physiological differentiation of the culture were
analyzed by applying PyMS and ANNs. The combination
of PyMS with multivariate and ANN was proved to be a
method for the rapid and quantitative analysis of the
state of physiological differentiation such as in the
analysis of clavulanic acid production in S. clavuligerus.

Abbreviations: ANN, artificial neural network; CVA,
canonical variate analysis; PCA, principal components
analysis; PyMS, pyrolysis mass spectrometry; PCs,
principal components; PCCV, principal component-
canonical variate; RBF, radial basis function; qy,, specific
glycerol uptake rate; ..., specific ammonium uptake rate;
. specific clavulanic production rate; Y, growth yield
coefficient; DX, cellular productivity; DP, clavulanic
acid productivity
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