ON THE MODULAR FUNCTION \(j_4 \) OF LEVEL 4

CHANG HEON KIM AND JA KYUNG KOO

ABSTRACT. Since the modular curves \(X(N) = \Gamma(N)\backslash \mathfrak{H}^* \) \((N = 1, 2, 3)\) have genus 0, we have field isomorphisms \(K(X(1)) \cong \mathbb{C}(J), K(X(2)) \cong \mathbb{C}(\lambda) \) and \(K(X(3)) \cong \mathbb{C}(j_3) \) where \(J, \lambda \) are the classical modular functions of level 1 and 2, and \(j_3 \) can be represented as the quotient of reduced Eisenstein series. When \(N = 4 \), we see from the genus formula that the curve \(X(4) \) is of genus 0 too. Thus the field \(K(X(4)) \) is a rational function field over \(\mathbb{C} \). We find such a field generator \(j_4(z) = x(z)/y(z) \) \((x(z) = \theta_3(\frac{z}{2}), y(z) = \theta_4(\frac{z}{2})\) Jacobi theta functions\). We also investigate the structures of the spaces \(M_k(\Gamma(4)), S_k(\Gamma(4)) \) and \(M_4(\Gamma(4)), S_4(\Gamma(4)) \) in terms of \(x(z) \) and \(y(z) \). As its application, we apply the above results to quadratic forms.

0. Introduction

Let \(\mathfrak{H} \) be the complex upper half plane. Then \(SL_2(\mathbb{Z}) \) acts on \(\mathfrak{H} \) by \((\begin{array}{cc} a & b \\ c & d \end{array}) \cdot \tau = \frac{a\tau + b}{c\tau + d} \) for \(\tau \in \mathfrak{H} \). Let \(\Gamma(N) \) \((N = 1, 2, 3, \cdots)\) be the principal congruence subgroups of \(SL_2(\mathbb{Z}) \) of level \(N \) and let \(\mathfrak{H}^* \) be the union of \(\mathfrak{H} \) and \(\mathbb{P}^1(\mathbb{Q}) \). The modular curve \(\Gamma(N)\backslash \mathfrak{H}^* \) is a projective closure of smooth affine curve \(\Gamma(N)\backslash \mathfrak{H} \), which we denote by \(X(N) \), with genus \(g_N \). We identify the function field \(K(X(N)) \) on the modular curve \(X(N) \) with the field of modular functions of level \(N \). By the genus formula ([11] Ch. IV §7, or [14] Proposition 1.40), the curves \(X(1), X(2) \) and \(X(3) \) have genus 0. Theoretically, we then have field isomorphisms \(K(X(1)) \cong \mathbb{C}(J), K(X(2)) \cong \mathbb{C}(\lambda) \) and \(K(X(3)) \cong \mathbb{C}(j_3) \) where \(J, \lambda \) are the classical modular functions of level 1 and 2, respectively and \(j_3 \)

1991 Mathematics Subject Classification: 11F11, 11E12, 11R04, 14H55.

Key words and phrases: modular functions, Jacobi theta functions, half integral modular forms, reduced \(p \)-division values, Fricke functions, quadratic forms.

This article was supported in part by Non-Directed Research Fund, Korea Research Foundation, 1993.
can be represented as the quotient of reduced Eisenstein series ([11] Ch. VII §1.2). Since the curve $X(4)$ is of genus 0 too, the field $K(X(4))$ is a rational function field over \mathbb{C}. In this case we shall find such a field generator j_4 (§2, Theorem 7) by means of theory of half integral modular forms. For generalities of half integral forms, we refer to [3] and [15].

In §1 we shall show, for later use, the generators and the cusps of the inhomogeneous group $\tilde{\Gamma}(4)$. In §3 we shall investigate the generators of the spaces $M_k(\Gamma(4)), S_k(\Gamma(4)), M_{3/2}(\tilde{\Gamma}(4))$ (the space of half integral modular forms of level 4) and $S_{3/2}(\tilde{\Gamma}(4))$ (the space of half integral cusp forms of level 4) in terms of Jacobi theta functions. Also, we shall prove in Theorem 16 that the normalized field generator $N(j_4)(z)$ is an algebraic integer for $z \in \mathcal{H} \cap \mathbb{Q}(\sqrt{-d}) \ (d > 0)$ (for notations, refer to [1]). In §4 we shall express j_4 as the quotient of reduced \wp-division values $\wp_{N, \alpha}$ where \wp is the Weierstrass \wp-function. And we shall show in Theorem 18 that $\mathbb{Q}(j_4)$ is none other than the field of all the modular functions of level 4 whose Fourier expansions with respect to $q_4 (= e^{2\pi iz/2})$ have rational coefficients.

In §5 we shall apply the result that $K(X(4))$ is equal to $\mathbb{C}(j_4)$ to quadratic forms. Let $Q(n, 1)$ be the set of even unimodular positive definite integral quadratic forms in n-variables. For $A[X]$ in $Q(n, 1)$, the theta series $\theta_A(z) = \sum_{X \in \mathbb{Z}^n} e^{\pi i z A[X]} \ (z \in \mathcal{H})$ is a modular form of weight $\frac{n}{2}$. If $n \geq 24$ and $A[X], B[X] \in Q(n, 1)$, then the quotient $\frac{\theta_A(z)}{\theta_B(z)}$ is a modular function of level N. We shall extend the results in [5] to the case $N = 4$. In other words, since $\frac{\theta_A(z)}{\theta_B(z)}$ is also a modular function of level 4, we can write it as a rational function of j_4 (Theorem 21). In case $n = 24$, we shall be successful in §6 and Appendix B in completely determining the theta series $\theta_A(z)$ as symmetric polynomials over \mathbb{Q} in $\theta_3(\frac{z}{2})$ and $\theta_4(\frac{z}{2})$ where θ_3, θ_4 are the Jacobi theta functions.

Through this article we adopt the following notations:

- \mathcal{H} - the extended complex upper half plane
- $\Gamma(N) = \{ \gamma \in SL_2(\mathbb{Z}) | \gamma \equiv I \mod N \}$
- $\Gamma_0(N)$ the Hecke subgroup $\{ (a \ b \ c \ d) \in \Gamma(1) | c \equiv 0 \mod N \}$
- $X(N) = \Gamma(N) \backslash \mathcal{H}$
- $X_0(N) = \Gamma_0(N) \backslash \mathcal{H}$
- $\overline{\Gamma}$ the inhomogeneous group of $\Gamma(= \Gamma/ \pm I)$
- $q_n = e^{2\pi iz/h}, \ z \in \mathcal{H}$
- $M_k(\Gamma(N))$ - the space of modular forms of weight k with respect to
the group \(\Gamma(N) \)
\(a \sim b \) means that \(a \) is equivalent to \(b \)
\(z \rightarrow i\infty \) denotes that \(z \) goes to \(i\infty \).

We shall always take the branch of the square root having argument in \((-\frac{\pi}{2}, \frac{\pi}{2}] \). Thus, \(\sqrt{z} \) is a holomorphic function on the complex plane with the negative real axis \((-\infty, 0] \) removed. For any integer \(k \), we define \(z^{\frac{k}{2}} \) to mean \((\sqrt{z})^k \).

1. Generators and cusps of \(\overline{\Gamma}(4) \)

Let \(\Gamma_1 \) and \(\Gamma_2 \) be two congruence subgroups of \(\Gamma(1) \) such that \(\Gamma_2 \subseteq \Gamma_1 \).
A subset \(\mathcal{F}_1 \) of the extended upper half plane \(\mathcal{H}^* \) is called a fundamental set for the group \(\overline{\Gamma}_1 \) if it contains exactly one representative of each class of points of \(\mathcal{H}^* \) equivalent under \(\overline{\Gamma}_1 \). A set \(\mathcal{F}_1 \) is called a fundamental region if \(\mathcal{F}_1 \) contains a fundamental set and if \(z \in \mathcal{F}_1, \gamma z \in \mathcal{F}_1 \) and \(\gamma(\neq I) \in \overline{\Gamma}_1 \) imply that \(z \) is a boundary point of \(\mathcal{F}_1 \).

Proposition 1. If \(\overline{\Gamma}_1 = \bigcup_{\nu=1}^{m} \overline{\Gamma}_2 \alpha_{\nu} \) is a coset decomposition of \(\overline{\Gamma}_1 \) and \(\mathcal{F}_1 \) is a fundamental region for \(\overline{\Gamma}_1 \), then \(\mathcal{F}_2 = \bigcup_{\nu=1}^{m} \alpha_{\nu}(\mathcal{F}_1) \) is a fundamental region for \(\overline{\Gamma}_2 \).

Proof. Theorem 2.3.5 [10]. \(\square\)

Theorem 2. Let \(\overline{\Gamma}_1 \) be a congruence subgroup of \(\overline{\Gamma}(1) \) of finite index and \(\mathcal{F} \) be a fundamental region for \(\overline{\Gamma}_1 \). Then the sides of \(\mathcal{F} \) can be grouped into pairs \(\lambda_j, \lambda_j' (j = 1, 2, \ldots, s) \) in such a way that \(\lambda_j \subseteq \mathcal{F} \) and \(\lambda_j' = \gamma_j \lambda_j \) where \(\gamma_j \in \overline{\Gamma}_1 (j = 1, 2, \ldots, s) \). \(\gamma_j \)'s are called boundary substitutions of \(\mathcal{F} \). Furthermore, \(\overline{\Gamma}_1 \) is generated by the boundary substitutions \(\gamma_1, \ldots, \gamma_s \).

Proof. For the first part, one is referred to [10], p. 58. For any \(\gamma \in \overline{\Gamma}_1 \), suppose there exists a sequence of images of \(\mathcal{F} \); \(\mathcal{F}, S_1 \mathcal{F}, S_2 \mathcal{F}, \ldots, S_n \mathcal{F} = \gamma \mathcal{F} \) (\(S_j \in \overline{\Gamma}_1 \)), each adjacent to its successor. Let \(\mathcal{F} \cap S_1 \mathcal{F} \supseteq \lambda_j' \). Since \(\gamma_j \lambda_j = \lambda_j' \) and \(\gamma_j \mathcal{F} \) is another fundamental region, \(\gamma_j \mathcal{F} = S_1 \mathcal{F} \), that is, \(S_1 = \gamma_j \). Then, \(\gamma_j \lambda_{i}, \gamma_j \lambda_{i}^{-1} (i = 1, 2, \ldots, s) \) form the sides of \(S_1 \mathcal{F} \). And \((\gamma_j \gamma_i \gamma_j^{-1}) \gamma_j \lambda_{i} = \gamma_j \lambda_{i} \), i.e., \(\gamma_j \gamma_i \gamma_j^{-1} (i = 1, \ldots, s) \) are boundary substitutions of \(S_1 \mathcal{F} \). Now, we will use induction on \(n \) to show that \(S_n(=\gamma) \) is generated by \(\gamma_1, \ldots, \gamma_s \) and boundary substitutions are also generated.
by them. The case \(n = 1 \) has been done. Now, denote the sides of \(S_{n-1}\mathcal{F} \) by \(\mu_i, \mu'_i \) \((i = 1, 2, \ldots, s)\). Let \(L_i \mu_i = \mu'_i \) for \(i = 1, \ldots, s \). Then, by induction hypothesis, \(S_{n-1} \) and \(L_i \) \((i = 1, \ldots, s)\) are generated by \(\gamma_1, \ldots, \gamma_s \). If \(S_{n-1}\mathcal{F} \cap S_n\mathcal{F} \supseteq \mu'_j \), then \(L_j \mu_j = \mu'_j \) implies that \(L_j S_{n-1}\mathcal{F} = S_n\mathcal{F} \), i.e., \(S_n = L_j S_{n-1} \). Hence, it is generated by \(\gamma_1, \ldots, \gamma_s \). Also, the set of all points in \(\mathcal{F} \) belonging to the region \(S_n\mathcal{F} \) that can be reached by such sequences is open, and so also is its complement in \(\mathcal{F} \) which must therefore be empty by connectedness of \(\mathcal{F} \). This completes the proof of the theorem.

Now, we will find the generators of the group \(\Gamma(4) \) by means of Proposition 1 and Theorem 2. It is well known that the fundamental region for \(\Gamma(2) \) is given by the figure ([11], p. 84) where \(T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \).

![Diagram of fundamental region](image)

On the other hand, \(\Gamma(2) \) has the following right coset decomposition

\[
\Gamma(2) = \Gamma(4) \cup \Gamma(4)T^2 \cup \Gamma(4)\alpha \cup \Gamma(4)\beta
\]

where \(\alpha = ST^{-2}S \) and \(\beta = (ST)^{-1}T^2ST \). Then Proposition 1 gives rise to the following fundamental region for \(\Gamma(4) \).
Note that $-2 \sim 2$, $-1 \sim \frac{1}{3}$, $-\frac{3}{2} \sim \frac{1}{2}$ and $-\frac{5}{3} \sim 1$ in $\Gamma(4) \backslash \mathfrak{H}^*$, which illustrates that there are six $\Gamma(4)$-inequivalent cusps $\infty, 0, 1, -1, -2, \frac{1}{2}$. Now, we will choose appropriate elements from $\Gamma(4)$ which describe the above equivalences. The proof of Lemma 1.41 in [14] provides the idea of explicit construction of them. Based on it, one can have

\[
\begin{align*}
(\frac{1}{4} 0)^1 \cdot 0 &= 0 \\
(\frac{-3}{4} -\frac{4}{11}) \cdot (-1) &= 1/3 \\
(\frac{5}{8} 0) \cdot (-3/2) &= 1/2 \\
(\frac{-4}{7} -\frac{12}{7}) \cdot (-5/3) &= 1 \\
(\frac{1}{0} 0)^1 \cdot (-1) &= 1/3 \\
(\frac{-3}{8} -\frac{4}{11}) \cdot (-3/2) &= 1/2 \\
(\frac{5}{8} 0) \cdot (-5/3) &= 1 \\
(\frac{-4}{7} -\frac{12}{7}) \cdot (-2) &= 2.
\end{align*}
\]

Now, put $\gamma_1 = (\frac{1}{0} 0)^1$, $\gamma_2 = (\frac{1}{4} 0)^1$, $\gamma_3 = (\frac{-3}{4} -\frac{4}{11})$, $\gamma_4 = (\frac{5}{8} 0)$, and $\gamma_5 = (\frac{-4}{7} -\frac{12}{7})$. Then, as described in the above figure, γ_i sends boundaries to boundaries for $i = 1, \ldots, 5$ because a linear fractional transformation maps a semicircle to a semicircle.

For the sake of convenience in use, we will express γ_i's as a combination of S and T^2. Obviously, $\gamma_1 = T^4$. Now, consider the case of γ_2. $\gamma_2 \infty = \frac{1}{4}$, $S(\gamma_2 \infty) = -4$, $T^4 S \gamma_2 \infty = 0$. By computing $T^4 S \gamma_2$, one gets $T^4 S \gamma_2 = S$. Hence $\gamma_2 = S^{-1} T^{-4} S$.

Next, consider the case of γ_3. $\gamma_3 \infty = \frac{3}{8}$, $S \gamma_3 \infty = -\frac{3}{8}$, $T^2 S \gamma_3 \infty = -\frac{3}{2}$, $ST^2 S \gamma_3 \infty = \frac{3}{2}$, $T^{-2} ST^2 S \gamma_3 \infty = -\frac{1}{2}$, $ST^{-2} ST^2 S \gamma_3 \infty = 2$.

\[T^{-2}S T^{-2}ST^2 S \gamma_3 \infty = 0, \ ST^{-2}S T^{-2}ST^2 S \gamma_3 \infty = \infty. \] By computing \[ST^{-2}S T^{-2}ST^2 S \gamma_3, \] one gets \[ST^{-2}S T^{-2}ST^2 S \gamma_3 = T^2. \] Hence, \[\gamma_3 = S^{-1}T^{-2}S^{-1}T^2S^{-1}T^2 = ST^{-2}ST^2ST^2 \text{ since } S^{-1} = S. \]

By a similar computation, one has \[\gamma_4 = ST^{-2}ST^{-2}ST^2ST^2 \]
\[\gamma_5 = T^2S^{-1}T^4ST^2. \]

2. Hauptfunktionen of level 4 as a quotient of Jacobi theta functions

For \(\mu, \nu \in \mathbb{R} \) and \(z \in \mathcal{H} \), put
\[\Theta_{\mu, \nu}(z) = \sum_{n \in \mathbb{Z}} \exp \left\{ \pi i \left(n + \frac{1}{2} \mu \right)^2 z + \pi i n \nu \right\}. \]

This series uniformly converges for \(\text{Im}(z) \geq \eta > 0 \), and hence defines a holomorphic function on \(\mathcal{H} \).

Theorem 3. If \(z \in \mathcal{H} \), then \(\Theta_{\mu, \nu}(z) = e^{-\frac{1}{2} \pi i \nu} \Theta_{\nu, \mu}(-1/z) \).

Proof. Theorem 7.1.1 [10]. \(\square \)

We recall the Jacobi theta functions \(\theta_2, \theta_3, \theta_4 \) defined by
\[\theta_2(z) := \Theta_{1,0}(z) = \sum_{n \in \mathbb{Z}} q_n^{(n+\frac{1}{2})^2} \]
\[\theta_3(z) := \Theta_{0,0}(z) = \sum_{n \in \mathbb{Z}} q_n^{n^2} \]
\[\theta_4(z) := \Theta_{0,1}(z) = \sum_{n \in \mathbb{Z}} (-1)^n q_n^{n^2}. \]

Then we have the following transformation formulas.
Theorem 4. For all \(z \in \mathcal{H} \),

\[
\begin{align*}
(i) \quad \theta_2(z + 1) &= e^{\frac{1}{8}\pi i} \theta_2(z) \\
(ii) \quad \theta_2(-1/z) &= (-iz)^{\frac{1}{2}} \theta_4(z) \\
\theta_3(z + 1) &= \theta_4(z) \\
\theta_3(-1/z) &= (-iz)^{\frac{1}{2}} \theta_3(z) \\
\theta_4(z + 1) &= \theta_3(z) \\
\theta_4(-1/z) &= (-iz)^{\frac{1}{2}} \theta_2(z).
\end{align*}
\]

Proof. Theorem 7.1.2 [10].

Let \(x(z) = \theta_3(\frac{z}{2}) \) and \(y(z) = \theta_4(\frac{z}{2}) \). We then readily have the transformation formulas using the above theorem.

Corollary 5. For all \(z \in \mathcal{H} \),

\[
\begin{align*}
(i) \quad \theta_2(z + 4) &= -\theta_2(z) \\
x(z + 2) &= y(z) \\
x(z + 4) &= x(z) \\
y(z + 2) &= x(z), \ y(z + 4) = y(z)
\end{align*}
\]

\[
\begin{align*}
(ii) \quad \theta_2(-2/z) &= (-iz/2)^{\frac{1}{2}} y(z) \\
x(-1/z) &= (-2iz)^{\frac{1}{2}} x(4z) \\
x(-4/z) &= (-iz/2)^{\frac{1}{2}} x(z) \\
y(-1/z) &= (-2iz)^{\frac{1}{2}} \theta_2(2z).
\end{align*}
\]

Theorem 6. \(x(z), y(z) \in M_1(\overline{\Gamma}(4)) \).

Proof. First, we will show the slash operator invariance by making use of the idea from [3], p. 148. For \(\gamma' \in \Gamma_0(4) \) and \(z \in \mathcal{H} \),

\[
(2.1) \quad \Theta(\gamma'z) = j(\gamma', z) \Theta(z)
\]

where \(\Theta(z) = \sum_{n \in \mathbb{Z}} q^n(q = q_1) \) and \(j(\gamma', z) \) is the automorphy factor for \(\Gamma_0(4) \). Then \(x(z) = \Theta(\frac{z}{4}) \) for any \(z \in \mathcal{H} \).

For \(\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma(4) \), put \(\gamma' = \left(\begin{smallmatrix} a & \frac{b}{4} \\ c & d \end{smallmatrix} \right) \). Note that \(\gamma' \in \Gamma_0(4) \) and \(\gamma' \cdot \frac{z}{4} = \frac{2z}{4} \). Then \(x(\gamma z) = \Theta(\frac{2z}{4}) = \Theta(\gamma' \cdot \frac{z}{4}) \) and, by (2.1),

\[
\Theta \left(\gamma' \cdot \frac{z}{4} \right) = j \left(\gamma', \frac{z}{4} \right) \Theta \left(\frac{4}{z} \right)
\]

\[
= \left(\frac{4c}{d} \right)^{\frac{1}{d}} \sqrt{4c \cdot \frac{z}{4} + d \cdot x(z)}
\]

\[
= \left(\frac{c}{d} \right) \sqrt{cz + d \cdot x(z)} \text{ since } d \equiv 1 \mod 4
\]

\[
= j(\gamma, z)x(z).
\]
This implies

\[x(\gamma z) = j(\gamma, z)x(z), \]

which means that \(x [\Gamma]_1 = x(z) \) for any \(\gamma \in \Gamma(4) \). For the case \(y(z) \), put \(T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \) as usual. Then by Corollary 5, \(y(z) = x(z + 2) = x(T^2 z) \).
Since \(\Gamma(4) \) is a normal subgroup of \(\Gamma(1) \), one has \(T^{-2} \Gamma(4) T^2 = \Gamma(4) \). For \(\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma(4) \), put \(\gamma' = T^2 \gamma T^{-2} = \left(\begin{array}{cc} c & 0 \\ d & 2c \end{array} \right) \in \Gamma(4) \). Then,

\[
y(\gamma z) = x(T^2 \gamma z) = x(T^2(T^{-2} \gamma' T^2)z) = x(\gamma'(T^2 z)) = j(\gamma', T^2 z) x(T^2 z) \text{ by (2.2)} \]
\[
= \left(\frac{c}{d - 2c} \right) \sqrt{c(z + 2) + d - 2c \cdot y(z)} = \left(\frac{c}{d - 2c} \right) \sqrt{cz + d \cdot y(z)}.
\]

To get the identity \(y(\gamma z) = j(\gamma, z)y(z) \), it remains to check that

\[
(2.3) \quad \left(\frac{c}{d - 2c} \right) = \left(\frac{c}{d} \right) \text{ for } \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma(4).
\]

Write \(c = (-1)^{sgn(c)} 2^n \cdot c' \) where \(c' \) is not divisible by 2 and \(c' > 0 \).
Since \(d - 2c \equiv d \mod 8 \), we have \((\frac{-1}{d-2c}) = (\frac{-1}{d}) \) and \((\frac{2}{d-2c}) = (\frac{2}{d}) \).
Thus it suffices to show \((\frac{c'}{d-2c}) = (\frac{c}{d}) \). From the generalized quadratic reciprocity law ([3], p. 153), we recall that \((\frac{d}{c}) = (-1)^{\frac{c-1}{4} \cdot \frac{d-1}{4}} (\frac{c}{d}) \) if \(c \) or \(d \) is positive. Indeed, since \(d - 2c \equiv 1 \mod 4 \) implies \((\frac{c}{d-2c}) = (\frac{d-2c}{c}) = (\frac{d}{c}) = (\frac{c}{d}) \),
Next, we check the cusp conditions. We saw in §1 that there are six \(\Gamma(4) \)-inequivalent cusps \(\infty, 0, 1, -1, -2, \frac{1}{2} \).

(i) \(s = \infty \):

From the definitions of \(x(z) \) and \(y(z) \)

\[
x(z) = \sum_{n \in \mathbb{Z}} q_4^{n^2} = 1 + 2q_4 + 2q_4^2 + 2q_4^3 + \ldots
\]
\[
y(z) = \sum_{n \in \mathbb{Z}} (-1)^n q_4^{n^2} = 1 - 2q_4 + 2q_4^2 - 2q_4^3 + \ldots,
\]

and so \(x(\infty) = y(\infty) = 1 \).

(ii) \(s = 0 \):
Take \(\xi = (S, \sqrt{z}) \) with \(S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \). Observe that \(\xi_\infty = 0 \). Then
\[
x|_{[\xi]_{\frac{1}{2}}} = x(Sz)\sqrt{z}^{-1} \\
= (-2iz)^{\frac{1}{2}}z^{-\frac{1}{2}}x(4z) \quad \text{by Corollary 5} \\
= (-2i)^{\frac{1}{2}}x(4z)
\]
so that we conclude
\[
x(0) = \lim_{z \to i\infty} x|_{[\xi]_{\frac{1}{2}}} = (-2i)^{\frac{1}{2}}.
\]
Similarly
\[
y|_{[\xi]_{\frac{1}{4}}} = y(Sz)\sqrt{z}^{-1} \\
= (-2iz)^{\frac{1}{2}}z^{-\frac{1}{4}}\theta_2(2z) \quad \text{by Corollary 5} \\
= (-2i)^{\frac{1}{2}} \sum_{n \in \mathbb{Z}} q_4^{(n+\frac{1}{2})^2} \\
= (-2i)^{\frac{1}{2}} \sum_{n \in \mathbb{Z}} q_4^{(2n+1)^2} \\
= (-2i)^{\frac{1}{2}}(2q_4 + 2q_4^9 + 2q_4^{25} + \ldots),
\]
hence \(y \) has a zero of order 1 at 0.

(iii) \(s = 1 \):
Take \(\xi = (ST^{-1}S, \sqrt{-z - 1}) \). Then \(\xi_\infty = 1 \) and \(x|_{[\xi]_{\frac{1}{2}}} = x(ST^{-1}Sz) \cdot \sqrt{-z - 1}^{-1} \). It follow from Corollary 5 that \(x(Sz) = (-2iz)^{\frac{1}{2}}x(4z) \), \(x(ST^{-1}z) = (-2iz + 2i)^{\frac{1}{2}}x(4z) \), and \(x(ST^{-1}Sz) = (2i^2z + 2i)^{\frac{1}{2}}(-i)^{\frac{1}{2}}x(z) \) = \((1 + z)^{\frac{1}{2}}x(z)\). Hence, \(x|_{[\xi]_{\frac{1}{4}}} = (1 + z)^{\frac{1}{2}}x(z) \). As \(z \to i\infty \), we have that \(x(1) = -i \). On the other hand, we have \(y|_{[\xi]_{\frac{1}{4}}} = y(ST^{-1}Sz)\sqrt{-z - 1}^{-1} \). Meanwhile, we know again by Corollary 5 that \(y(Sz) = (-2iz)^{\frac{1}{2}}\theta_2(2z) \), \(y(ST^{-1}z) = (-2iz + 2i)^{\frac{1}{2}}\theta_2(2z - 2) = (-2iz + 2i)^{\frac{1}{2}}(-i)\theta_2(2z) \), and \(y(ST^{-1}Sz) = (-i)(1 + z)^{\frac{1}{2}}y(z) \). Thus we come up with \(y|_{[\xi]_{\frac{1}{4}}} = (-i)(1 + z)^{\frac{1}{2}}(-i)^{-1}(1 + z)^{-\frac{1}{2}}y(z) \). As \(z \to i\infty \), \(y(1) = -1 \).

(iv) \(s = -1 \):
Take \(\xi = (STS, \sqrt{z - 1}) \). Then \(\xi_\infty = -1 \) and \(x(STz) = (-2iz - 2i)^{\frac{1}{2}}x(4z) \), \(x(STSz) = (2i^2z^2 - 2i)^{\frac{1}{2}}(-i)^{\frac{1}{2}}x(z) = (1 - z)^{\frac{1}{2}}x(z) \). Therefore, \(x|_{[\xi]_{\frac{1}{4}}} = i^{-1}x(z) \). As \(z \to i\infty \), \(x(1) = -i \). Similarly, \(y(STz) = (-2iz -
2i^{1/2}iθ_2(2z), and \(y(STSz) = \iota(1 - z^{1/2}y(z).\) Hence, \(y|_{s_1} = y(z).\) As \(z \to \iota\infty, y(-1) = 1.\)

(v) \(s = -2: \)

Take \(\xi = (T^{-2}S, \sqrt{2}).\) Then \(\xi\iota\infty = -2\) and \(x(T^{-2}z) = x(z - 2) = y(z),\) \(x(T^{-2}S) = y(-\frac{1}{2}) = (-2i\xi)^{1/2}\theta_2(2z).\) Therefore, \(x|_{s_1} = x(T^{-2}S)z^{-1/2} = (-2i\xi)^{1/2}z^{-1/2}\theta_2(2z) = (-2i)^{1/2}\theta_2(2z) = (-2i)^{1/2}(2q_4 + 2q_6^2 + 2q_8^2 + \ldots).\) It then follows that \(x\) has a zero of order 1 at \(-2.\) In a similar way, \(y(T^{-2}z) = y(z - 2) = x(z)\) and \(y(T^{-2}S) = x(-\frac{1}{2}) = (-2i\xi)^{1/2}x(4z).\) This yields that \(y|_{s_1} = (-2i)^{1/2}x(4z).\) As \(z \to \iota\infty,\) we have \(y(-2) = (-2i)^{1/2}.\)

(vi) \(s = \frac{1}{2}: \)

Take \(\xi = (ST^{-2}S, \sqrt{-2z - 1}).\) Then \(x(ST^{-2}z) = (-2i\xi + 4i)^{1/2}x(4z)\) and \(x(ST^{-2}S) = -(2i\xi + 4i)^{1/2}(1 + 2z)^{1/2}x(z);\) hence \(x|_{s_1} = -i^{-1}x(z).\) As \(z \to \iota\infty, x(\frac{1}{2}) = -i.\) In like manner, \(y(ST^{-2}z) = (-2i\xi + 4i)^{1/2}\theta_2(2z - 4) = (-2i\xi + 4i)^{1/2}(-1)\theta_2(2z),\) \(y(ST^{-2}S) = -(1 + 2z)^{1/2}y(z).\) Therefore \(y|_{s_1} = -i^{-1}y(z).\) As \(z \to \iota\infty,\) we have \(y(\frac{1}{2}) = i.\) \(\square\)

Put
\[
j_4(z) = \frac{x(z)}{y(z)} = 1 + 4q_4 + 8q_4^2 + 16q_4^3 + 32q_4^4 + 56q_4^5 + 96q_4^6 + 160q_4^7 + \cdots.
\]

Theorem 7. \(K(X(4)) = \mathbb{C}(j_4)\) and \(j_4\) has the following value at each cusp: \(j_4(\infty) = 1, j_4(0) = \infty\) (a simple pole), \(j_4(1) = i, j_4(-1) = -i, j_4(-2) = 0\) (a simple zero), \(j_4(1/2) = -1.\)

Proof. First, we claim that for \(f(z) \in M_4(\overline{\Gamma}(4)), f^2(z) \in M_4(\Gamma(4)).\) In fact, if \(\gamma \in \Gamma(4)\) then we have \(f|_{\gamma} = f(z).\) This is equivalent to \(f(\gamma z) = f(z)j(\gamma, z),\) that is, \(f(\gamma z) = f(z)(\gamma)^{1/2}\gamma^{1/2}\gamma^{1/2}\gamma z + d = f(z)(\gamma)^{1/2}\gamma^{1/2}\gamma^{1/2}\gamma z + d\) since \(d \equiv 1\ mod\ 4.\) Squaring both sides, we have \(f^2(\gamma z) = f^2(z) \cdot (cz + d)\) for any \(\gamma \in \Gamma(4).\) Therefore \(f^2 \in M_4(\Gamma(4)).\) Thus by Theorem 6 \(x^2(z), y^2(z) \in M_1(\Gamma(4)).\) Meanwhile, we saw in the proof of Theorem 6 that each of \(x(z)\) and \(y(z)\) has a simple zero at only one cusp. Observe that for \(f \in M_k(\Gamma(N))\), the sum of zeros is \(\nu_0(f) = \frac{\mu_N k}{12}\) where \(\mu_N = |\overline{\Gamma} : \overline{\Gamma}(N)|.\) It then follows that \(\nu_0(x^2) = \nu_0(y^2) = \frac{\mu_5 k}{12} = 2.\) Since \(x^2\) and \(y^2\) already have a zero of order 2 at cusps, they have no zero in \(S.\) This asserts that \(\deg(j_4)_0 = 1,\) and hence \([K(X(4)) : \mathbb{A}] = 1.\)
\[\mathbb{C}(j_4) = \text{deg}(j_4)_0 = 1. \] The second part is immediate by definition and Theorem 6.

Proposition 8. The cusps of \(\Gamma(4) \) are regular in the sense of half integral weight forms. (for definitions and notations, refer to [3], Ch. IV)

Proof. We know that if \(f(z) \in M_{k}(\tilde{\Gamma}(4)) \), then \(f(s) = 0 \) for a \(k \)-irregular cusp \(s \). Since \(x(z) \) and \(y(z) \) belong to \(M_{\frac{k}{2}}(\tilde{\Gamma}(4)) \), if a 1-irregular cusp \(s \) exists then we must have \(x(s) = y(s) = 0 \). We saw, however, in the proof of Theorem 6 that such a cusp does not exist.

Alternative proof of Proposition 8. At \(\infty \), we readily see that \(\xi = 1 \), \(h = 1 \) and \(t = 1 \). At 0, take \(\xi = (((0 \hfill 1) \hfill 0) \hfill 1) \), so that \(\xi^{-1} = ((0 \hfill 1) \hfill 0) \), \(-i\sqrt{z} \). We need \(\tilde{\Gamma}(4) \ni \xi ((1 \hfill 0) \hfill 1), t \xi^{-1} = ((-1 \hfill 0) \hfill 1), -it\sqrt{hz - 1} \), which is valid when \(h = 4 \) and \(t = 1 \).

At the cusp 1, take \(\alpha = ((-1 \hfill 0) \hfill -1) \) and \(\xi = ((-1 \hfill 0) \hfill 1) \), \(\sqrt{-z - 1} \) so that \(\xi^{-1} = ((-1 \hfill 0) \hfill 1), \sqrt{z - 1} \). One must choose \(h = 4 \) to obtain \(\alpha((1 \hfill h) \hfill 1, h) = ((-1 \hfill 0) \hfill 1) \). To find \(h \) we compute \(\xi(((1 \hfill \frac{1}{4}) \hfill 1) \), \(t \xi^{-1} = ((-1 \hfill 4\frac{1}{5}) \hfill 1, \sqrt{-4z + 5} \), which implies \(j((\hfill -\frac{3}{4} \hfill -\frac{1}{5}), z) = \frac{1}{t} = \sqrt{-4z + 5} \) provided that \(t = 1 \). Therefore 1 is regular.

At the cusp \(-1\), take \(\alpha = ((1 \hfill 0) \hfill 1), \xi = ((-1 \hfill 0) \hfill 1), \sqrt{-z - 1} \) so that \(\xi^{-1} = ((-1 \hfill 0) \hfill 1), \sqrt{-z - 1} \). To get \(\alpha((1 \hfill h) \hfill h) = ((-1 \hfill h) \hfill 1) \), one must take \(h = 4 \). For \(t \), compute \(\xi(((1 \hfill \frac{1}{4}) \hfill 1) \), \(t \xi^{-1} = ((-1 \hfill 4\frac{1}{3}) \hfill 1, \sqrt{-4z - 3} \), which gives \(j((\hfill -\frac{4}{3} \hfill -\frac{1}{3}), z) = \frac{1}{t} = \sqrt{-4z - 3} \) provided that \(t = 1 \). Thus \(-1\) is regular.

At the cusp \(-2\), take \(\alpha = ((-2 \hfill 1) \hfill 1), \xi = ((-2 \hfill 1) \hfill 1), \sqrt{z} \); hence \(\xi^{-1} = ((-1 \hfill 0) \hfill 1, \sqrt{-z - 2}) \). To have \(\alpha((1 \hfill h) \hfill 1) \), \(\alpha^{-1} = ((1 + 2h \hfill 1 - 2h) \hfill 1) \), one is to take \(h = 4 \). For \(t \), compute \(\xi(((1 \hfill \frac{1}{4}) \hfill 1) \), \(t \xi^{-1} = ((-1 \hfill 4\frac{1}{7}) \hfill 1, \sqrt{-4z - 7} \), which implies \(j((\hfill 1 \hfill 4 \hfill 167), z) = \frac{1}{t} = \sqrt{-4z - 7} \) provided that \(t = 1 \). Hence \(-2\) is regular.

Finally at the cusp \(\frac{1}{2} \), take \(\alpha = ((-1 \hfill 1) \hfill 0) \), \(\xi = ((-1 \hfill 1) \hfill 0), \sqrt{-2z - 1} \) so that \(\xi^{-1} = ((-1 \hfill 0) \hfill 1), \sqrt{2z - 1} \). To have \(\alpha((1 \hfill h) \hfill 1) \), \(\alpha^{-1} = ((1 - 2h \hfill 1 + 2h) \hfill 1) \), again one choose \(h = 4 \). To find \(t \), compute \(\xi(((1 \hfill \frac{1}{4}) \hfill 1) \), \(t \xi^{-1} = ((-1 \hfill 4\frac{1}{7}) \hfill 1, \sqrt{-16z + 9} \), which gives \(j((\hfill 1 \hfill 4 \hfill 167), z) = \frac{1}{t} = \sqrt{-16z + 9} \) when \(t = 1 \), which amounts to say that \(\frac{1}{2} \) is regular.
3. Structures of $M_k(\Gamma(4))$ and $S_k(\Gamma(4))$

We recall from [10] and [14] the following facts:

FACT 1. For $k \geq 2$ and Γ' a congruence subgroup of $\Gamma(1)$, we have

\[
dim M_k(\Gamma') = \begin{cases}
 g + \sigma_\infty(\Gamma') - 1 & \text{if } k = 2 \\
 (k - 1)(g - 1) + \frac{k}{2} \cdot \sigma_\infty(\Gamma') + \sum_{i=1}^{r} \left[\frac{k(e_i - 1)}{2e_i} \right] & \text{if } k \text{ even} \\
 (k - 1)(g - 1) + \frac{u_k}{2} + \frac{u'(k-1)}{2} + \sum_{i=1}^{r} \left[\frac{k(e_i - 1)}{2e_i} \right] & \text{if } k \text{ odd, } -1 \notin \Gamma'
\end{cases}
\]

where g is the genus of $\Gamma' \setminus \Gamma^*$, $\sigma_\infty(\Gamma')$ the number of Γ'-inequivalent cusps, e_1, \ldots, e_r the orders of inequivalent elliptic elements of Γ' and u (resp. u') the number of inequivalent regular (resp. irregular) cusps of Γ'.

\[
dim S_k(\Gamma') = \begin{cases}
 \dim M_k(\Gamma') - \sigma_\infty(\Gamma') & \text{if } k > 2 \\
 g & \text{if } k = 2 \\
 0 & \text{otherwise.}
\end{cases}
\]

For $k = 1$ and $\Gamma' = \Gamma(N)$,

\[
dim M_1(\Gamma(N)) = \frac{\mu_N}{2N} \text{ with } \mu_N = [\overline{\Gamma}(1) : \overline{\Gamma}(N)], \text{ if } u \geq 2g - 2
\]

\[
dim S_1(\Gamma(N)) = 0 \text{ for } 3 \leq N \leq 11.
\]

FACT 2. Let $X(z) = \theta_4^4(z)$, $Y(z) = \theta_4^4(z)$ and $\lambda(z) = \frac{X(z)}{Y(z)}$. Then $X, Y \in M_2(\Gamma(2))$ and $K(X(2)) = C(\lambda)$.

THEOREM 9. (i) For $k \geq 1$, $\dim M_{2k}(\Gamma(2)) = k + 1$ and $\dim S_{2k}(\Gamma(2)) = k - 2$ if $k \geq 3$.

(ii) $M_{2k}(\Gamma(2))$ is spanned over C by $k + 1$ functions $X^k, X^{k-1}Y, \ldots, Y^k$.

(iii) $S_{2k}(\Gamma(2))$ is spanned by $k - 2$ functions $\Delta_2 X^{k-3}, \Delta_2 X^{k-2}Y, \ldots, \Delta_2 Y^{k-3}$ where $\Delta_2 = XY(X - Y) \in S_6(\Gamma(2))$ and $k \geq 3$.

Proof. If $\Gamma' = \Gamma(2)$, we have $g = 0, \sigma_\infty = 3, e_i = 0$ for all i, $u = 3$, and $\mu_2 = 6$. Then (i) follows from Fact 1. Now, consider (iii). Note that $\lambda(\infty) = 0, \lambda(1) = \infty$, and $\lambda(0) = 1$ imply that Δ_2 is a cusp form. For any $f \in M_6(\Gamma(2))$, the number of zeros of f is

\[
\nu_0(f) = \frac{\mu_2 \cdot 6}{12} = \frac{6 \cdot 6}{12} = 3.
\]
Since Δ_2 is a cusp form, $\nu_0(\Delta_2) \geq 3$. But, it follows by (3.1) that $\nu_0(\Delta_2) = 3$. Also, all zeros of Δ_2 appear at the cusps, which means that $\Delta_2(z) \neq 0$ on \mathfrak{H}. Observe that each function stated in (iii) is in $S_{2k}(\Gamma(2))$ and the cardinality is the same as dim $S_{2k}(\Gamma(2))$. Therefore it is necessary to check their independency to justify (iii). Suppose that

$$\sum_{i=0}^{k-3} c_i \Delta_2 X^{k-3-i} Y^i = 0$$

for $c_i \in \mathbb{C}$.

Since $\Delta_2 Y^{k-3}$ never vanishes in \mathfrak{H}, dividing the above by $\Delta_2 Y^{k-3}$, we have

$$\sum_{i=0}^{k-3} c_i \lambda^{k-3-i} = 0.$$

Since λ is transcendental over \mathbb{C}, $c_i = 0$ for all i. (ii) can be proved in a similar fashion. \hfill \Box

Theorem 10.

(i) $\dim M_k(\Gamma(4)) = 2k + 1$ for $k \geq 1$, $\dim S_k(\Gamma(4)) = 2k - 5$ for $k \geq 3$.

(ii) $M_k(\Gamma(4))$ is spanned over \mathbb{C} by the functions $x^{2k}, x^{2k-1} y, \ldots, y^{2k}$.

(iii) Let $\Delta_4 = x y(x^4 - y^4)$. Then $\Delta_4 \in S_3(\Gamma(4))$ and for $k \geq 3$, $S_k(\Gamma(4))$ is spanned by $\Delta_4 x^{2k-6}, \Delta_4 x^{2k-7} y, \ldots, \Delta_4 y^{2k-6}$.

Proof. If $\Gamma' = \Gamma(4)$, we have $g = 0$, $\sigma_\infty = 6$, $e_i = 0$ for all i, $u = 6$, and $\mu_4 = 24$. Then (i) is immediate by Fact 1. We consider (ii) because (ii) can be handled in a similar way. By Theorem 6, the functions mentioned in (iii) belong to $M_k(\Gamma(4))$. Since $y(0) = 0$ and $x(-2) = 0$, $\Delta_4(0) = \Delta_4(-2) = 0$. And

$$(3.2) \quad \frac{\Delta_4}{y^6} = j_4(j_4^4 - 1).$$

If $s \neq 0$, -2 then $j_4(s)$ is a 4-th root of unity. Also, for $s \neq 0$, $y(s) \neq 0$. Hence, by (3.2), Δ_4 is a cusp form. For any $f \in M_3(\Gamma(4))$, the number of zeros is

$$(3.3) \quad \nu_0(f) = \frac{\mu_4 \cdot 3}{12} = 6.$$

Since Δ_4 is a cusp form, $\nu_0(\Delta_4) \geq 6$. But, by (3.3), $\nu_0(\Delta_4) = 6$ so that Δ_4 never vanishes on \mathfrak{H}. Now, all functions in (iii) are in $S_k(\Gamma(4))$. It
remains to check that they are linearly independent because the cardinality is equal to the dimension of $S_k(\Gamma(4))$. Suppose that

$$
\sum_{i=0}^{2k-6} c_i \Delta_4 x^{2k-6-i} y^i = 0 \text{ for } c_i \in \mathbb{C}.
$$

Since $\Delta_4 y^{2k-6}$ never vanishes on \mathfrak{H}, dividing the above by $\Delta_4 y^{2k-6}$, we have

$$(3.4) \sum_{i=0}^{2k-6} c_i j_4^{2k-6-i} = 0.$$

Here we have to show that j_4 is transcendental over \mathbb{C}. Choose any $c \in \mathbb{C}$ and consider $j_4 - c$. Since $j_4 - c$ is a nonconstant modular function, it has at least one zero. This implies that the image of j_4 is all of \mathbb{C}. But if we had an algebraic equation satisfied by j_4, then the image of j_4 would be mapped into the set of solutions of the algebraic equation which is at most a finite set. This is impossible. Therefore $c_i = 0$ for all i in (3.4).

\[\square\]

Remark. For any $\frac{k}{2} \in \mathbb{N}$, $M_{\frac{k}{2}}(\tilde{\Gamma}(4)) = M_{\frac{k}{2}}(\Gamma(4))$. Indeed, for $\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma(4)$,

$$j(\gamma, z) = \left(\frac{c}{d} \right) \sqrt{cz+d} \text{ since } d \equiv 1 \text{ mod } 4.$$

Since k is even, $j(\gamma, z)^k = (cz+d)^{\frac{k}{2}}$, that is, $M_{\frac{k}{2}}(\tilde{\Gamma}(4))$ has the same automorphy factor as that of $M_{\frac{k}{2}}(\Gamma(4))$.

Before going further we will show the algebraic independency of $x(z)$ and $y(z)$. To this end, we need the following lemma.

Lemma 11. If $f_k + f_{k-1} + \cdots + f_0 = 0$ where $k \in \mathbb{N}$ and $f_i \in M_{\frac{k}{2}}(\tilde{\Gamma}(4))$ for $i = 0, \ldots, k$, then $f_i = 0$ for all $i = 0, \ldots, k$.

Proof. Fix an arbitrary point $z \in \mathfrak{H}$. Put $\gamma_i = \left(\begin{array}{cc} 1 & 0 \\ 4i & 1 \end{array} \right)$ for $i = 0, \ldots, k + 1$. Then $j(\gamma_i, z) = \left(\frac{d}{4i} \right) \sqrt{4iz+1} = \sqrt{4iz+1}$ are distinct. By the assumption,

$$f_k(\gamma_i z) + f_{k-1}(\gamma_i z) + \cdots + f_0(\gamma_i z) = 0.$$

Since $f_i \in M_{\frac{k}{2}}(\tilde{\Gamma}(4))$ for $i = 0, \ldots, k$, we have

$$j(\gamma_i, z)^k f_k(z) + j(\gamma_i, z)^{k-1} f_{k-1}(z) + \cdots + f_0(z) = 0.$$

for $i = 0, \ldots, k + 1$. This gives rise to the following linear system
\[
\begin{pmatrix}
 j(\gamma_1, z)^k & \cdots & j(\gamma_i, z) & 1 & f_k(z) \\
 j(\gamma_2, z)^k & \cdots & j(\gamma_2, z) & 1 & f_{k-1}(z) \\
 \vdots & \ddots & \vdots & \vdots & \vdots \\
 j(\gamma_{k+1}, z)^k & \cdots & j(\gamma_{k+1}, z) & 1 & f_0(z)
\end{pmatrix} = 0.
\]
Note that the determinant of the above system is the well-known Vandermonde determinant, which is nonzero because $j(\gamma, z)$'s are all distinct. Hence, $f_i(z) = 0$ for each i. Since z is arbitrary, $f_i = 0$ for any i. □

Now, suppose that there exists a polynomial $F \in \mathbb{C}[X_1, X_2]$ which is satisfied by $x(z)$ and $y(z)$. By Theorem 6 and Lemma 11, we may assume that F is homogeneous. Let $\deg F = n$. Then,
\[
\frac{F(x, y)}{y^n} = \sum_{k=0}^{n} a_k j_4^k = 0
\]
for $a_k \in \mathbb{C}$. Since j_4 is transcendental over \mathbb{C}, it follows that $a_k = 0$ for any k; hence $F = 0$. This guarantees the algebraic independency of x and y.

Theorem 12.
\[
X(z) = \theta_2(z)^4 = \frac{1}{4}(x^4 - 2x^2y^2 + y^4) \\
Y(z) = \theta_3(z)^4 = \frac{1}{4}(x^4 + 2x^2y^2 + y^4).
\]

Proof. Note that ∞ is equivalent to $\frac{1}{2}$, $1 \sim -1$ and $0 \sim -2$ in the curve $\Gamma(2) \setminus \mathcal{D}^*$. Thus $\theta_2^4(\infty) = 0$ implies $\theta_2^4(\frac{1}{2}) = 0$. Also, $\theta_3^4(1) = 0$ implies $\theta_3^4(-1) = 0$. Considering the values of x and y at the cusps, we obtain
\[
(x^4 - 2x^2y^2 + y^4)(\infty) = 0 \quad (x^4 - 2x^2y^2 + y^4)(\frac{1}{2}) = 0 \quad (x^4 - 2x^2y^2 + y^4)(1) = 0 \quad (x^4 - 2x^2y^2 + y^4)(-1) = 0.
\]
Let us recall that for $f \in M_2(\Gamma(4))$, the number of zeros is
\[
\nu_0(f) = \frac{\mu_4 \cdot 2}{12} = 4.
\]
Since θ_2^4 (resp. θ_3^4) has a zero of order 1 at ∞ (resp. at 1) in q_2 expansion, it has a zero of order 2 in q_4 expansion. Meanwhile, (3.5)
shows that $\nu_0(\theta_2^4) = \nu_0(\theta_4^4) = 4$. Hence it turns out that they have no other zeros except those mentioned above. On the other hand, it follows from the equality $(x^4 \pm 2x^2y^2 + y^4) = (x^2 \pm y^2)^2$ that they have zeros of even order. Again by (3.5), they have no other zeros except those.

Therefore $\frac{\theta_2^4}{x^4 - 2x^2y^2 + y^4}$ has no zeros and no poles, which claims that the quotient is a constant. We use the transformation formula for θ_2 in Theorem 4 and Theorem 6 to get that $\theta_2^4(0) = -1$ and $(x^4 - 2x^2y^2 + y^4)(0) = ((-2i)^\frac{1}{2})^4 = -4$. Hence, the constant should be $\frac{1}{4}$. Likewise, we can show the other case.

Theorem 13 (Extended Version of Theorem 10). (i) For $k \geq 1$, \text{dim} \ M_{\frac{k}{2}}(\tilde{\Gamma}(4)) = k + 1$ and $M_{\frac{k}{2}}(\tilde{\Gamma}(4))$ is spanned by $x^k, x^{k-1}y, \ldots, y^k$, that is, it is the space of all polynomials in $\mathbb{C}[x, y]$ having pure weight $\frac{k}{2}$.

(ii) For $k \geq 6$, \text{dim} \ S_{\frac{k}{2}}(\tilde{\Gamma}(4)) = k - 5$ and $S_{\frac{k}{2}}(\tilde{\Gamma}(4))$ is generated by $\Delta_4x^{k-6}, \Delta_4x^{k-7}y, \ldots, \Delta_4y^{k-6}$ with Δ_4 as in Theorem 10.

Proof. For (i), it is enough to consider the case $\frac{k}{2} \notin \mathbb{N}$. Note that $x^k, x^{k-1}y, \ldots, y^k$ are linearly independent and belong to $M_{\frac{k}{2}}(\tilde{\Gamma}(4))$ due to Theorem 6. Let $\alpha \in M_{\frac{k}{2}}(\tilde{\Gamma}(4))$. Then, $\alpha \cdot x \in M_{k+2}(\tilde{\Gamma}(4))$. Since $\frac{k+1}{2} \in \mathbb{N}$, by Theorem 10, we obtain

$$\alpha \cdot x = c_0x^{k+1} + c_1x^ky + \cdots + c_{k+1}y^{k+1}$$

for $c_i \in \mathbb{C}$. Now, evaluate the above at the cusp $s = -2$. Then $x(-2) = 0$ and $y(-2) \neq 0$ give $c_{k+1} = 0$. Since $x(z) \neq 0$ on S, we can divide the both sides in (3.6) by x. Then $\alpha \in \mathbb{C}x^k + \cdots + \mathbb{C}y^k$, from which (i) follows. (ii) can be similarly proved. The only nontrivial part is that $\Delta_4x^{k-6}, \Delta_4x^{k-7}y, \ldots, \Delta_4y^{k-6}$ span $S_{\frac{k}{2}}(\tilde{\Gamma}(4))$. Let $\beta \in S_{\frac{k}{2}}(\tilde{\Gamma}(4))$. Then $\beta \cdot x \in M_{k+2}(\tilde{\Gamma}(4))$. Since $\frac{k+1}{2}$ is an integer, it turns out that

$$\beta \cdot x = c_0\Delta_4x^{k-5} + \cdots + c_{k-5}\Delta_4y^{k-5}$$

for $c_i \in \mathbb{C}$. Comparing the order of zero at -2, we see that all terms except $c_{k-5}\Delta_4y^{2k-6}$ have the orders greater than or equal to 2. But the term $c_{k-5}\Delta_4y^{k-5}$ has the order 1 at -2, which forces us to have $c_{k-5} = 0$. Dividing the both sides of (3.7) by x, we come up with $\beta \in \mathbb{C}\Delta_4x^{k-6} + \cdots + \mathbb{C}\Delta_4y^{k-6}$. \hfill \Box
Example. Define
\[\Theta(z) := \sum_{n \in \mathbb{Z}} q^{n^2} \quad (z \in \mathcal{H}). \]

Then \(\Theta \in M_{\frac{1}{2}}(\tilde{\Gamma}_0(4)) \) ([3], p. 184). Hence, \(\Theta \in M_{\frac{1}{2}}(\tilde{\Gamma}(4)) \) and, by Theorem 13, it can be written as a linear combination of \(x \) and \(y \)
\begin{equation}
\Theta = ax + by
\end{equation}
for some \(a, b \in \mathbb{C} \). Observe that \(\Theta(\infty) = 1 \) and \(\Theta(\frac{1}{2}) = 0 \) because \(\frac{1}{2} \) is a 1-irregular cusp of \(\Gamma_0(4) \). Evaluating (3.8) at the cusps \(\infty \) and \(\frac{1}{2} \), we get \(a = b = \frac{1}{2} \). Therefore the result is
\[\Theta = \frac{1}{2}x + \frac{1}{2}y. \]

Before closing this section we try to find the relations between \(j_4 \) and the classical modular functions \(J \) and \(\lambda \).

Theorem 14. (i) We have
\[\lambda = \frac{j_4^4 - 2j_4^2 + 1}{j_4^4 + 2j_4^2 + 1} \]
and the irreducible polynomial of \(j_4 \) is \(Z^4 + 2\frac{\lambda + 1}{\lambda - 1} Z^2 + 1 \in \mathbb{C}(\lambda)[Z] \) over \(\mathbb{C}(\lambda)(= K(X(2))) \).

(ii) Let \(J \) be the classical modular function of level 1 with \(J(i) = 1 \). Then one has
\[J = \frac{1}{108} \frac{(j_4^8 + 14j_4^4 + 1)^3}{(j_5^8 - j_4^8)} \]
and the irreducible polynomial of \(j_4 \) over \(\mathbb{C}(J) \) is \((Z^8 + 14Z^4 + 1)^3 - 108J(Z^8 - Z)^6 \in \mathbb{C}(J)[Z] \).

Proof. In (i), the equality of \(\lambda \) follows from Theorem 12. Observe that
\[[K(X(4)) : K(X(2))] = [\tilde{\Gamma}(2) : \tilde{\Gamma}(4)] = 4. \]
Hence, \(\deg(\text{Irr}(j_4, \mathbb{C}(\lambda))) = 4 \). Clearly, \(j_4 \) satisfies \(Z^4 + 2\frac{\lambda + 1}{\lambda - 1} Z^2 + 1 \). Thus, the two polynomials are the same. Since
\[J = \frac{4 (\lambda^2 - \lambda + 1)^3}{27 \lambda^2(\lambda - 1)^2} \]
([10], p. 228), plugging (i) into the above we come up with the equality in (ii). Now, \(K(X(1)) = \mathbb{C}(J), K(X(4)) = \mathbb{C}(j_4) \) and
\[[K(X(4)) : K(X(1))] = [\tilde{\Gamma}(1) : \tilde{\Gamma}(4)] = 24. \]
And $\deg(\text{Irr}(j_4, \mathbb{C}(J))) = 24$. By the same reason as in (i), the second part of (ii) follows.

For $z \in \mathbb{Q}(\sqrt{-d}) \cap \mathbb{R}$ ($d > 0$), it is well-known that $j(z) (= 1728J(z))$ is an algebraic integer ([6], [14]). For algebraic proofs, see [2], [7], [13] and [16]. Therefore it is natural to ask whether $j_4(z)$ is so or not. Although we have Theorem 14 at hand, the answer for the above question seems to be negative because the modular function $J(z)$ has no Fourier expansion of the form $q^{-1}(1 + \sum_{n \geq 1} a_n q^n)$. To support the above claim, let us find a counter example as follows. Observe that

$$(3.9) \quad \theta_2(2z) = \frac{1}{2} \left(\theta_3 \left(\frac{z}{2} \right) - \theta_4 \left(\frac{z}{2} \right) \right).$$

$$(3.10) \quad \theta_3(2z) = \frac{1}{2} \left(\theta_3 \left(\frac{z}{2} \right) + \theta_4 \left(\frac{z}{2} \right) \right).$$

Lemma 15. (i) For $x \in \mathbb{R}_+$, $j_4(x^i) > 0$.
(ii) For $z \in \mathbb{R}_+$, $j_4(2z)^2 = \frac{1}{2}(j_4(z) + j_4(z)^{-1})$.
(iii) $j_4 \left(\frac{i}{2^n} \right) = \frac{j_4(2^n i)}{j_4(2^{n+1} i)} + 1$ for $n \in \mathbb{N} \cup \{0\}$.
(iv) $j_4(2z)^4 = \frac{1}{1-j_4(z)}$.

Proof. It follows from the definition that $\theta_3 \left(\frac{z}{2} \right) = \sum_{n \in \mathbb{Z}} e^{\pi i \frac{q^2}{4} n^2} = \sum_{n \in \mathbb{Z}} e^{-\pi i n^2} > 0$. And by Theorem 4 (ii) and (3.9), $\theta_4 \left(\frac{z}{2} \right) = \theta_4 \left(-\frac{z}{2} \right) = (-i\frac{z}{2})^{1/2} \theta_2 \left(\frac{2z}{x} \right) = \sqrt{2} \cdot \frac{1}{2} \left(\theta_3 \left(\frac{1}{2z} \right) - \theta_4 \left(\frac{1}{2z} \right) \right) > 0$. This implies (i). For the second, we readily get that

$$j_4(2z)^2 = \frac{\theta_3(z)^2}{\theta_4(z)^2} = \frac{\theta_3 \left(\frac{z}{2} \right)^2 + \theta_4 \left(\frac{z}{2} \right)^2}{2 \theta_3 \left(\frac{z}{2} \right) \theta_4 \left(\frac{z}{2} \right)}$$

by [10], Theorem 7.1.8

$$= \frac{1}{2} (j_4(z) + j_4(z)^{-1}).$$

Finally, for $n \in \mathbb{N} \cup \{0\}$

$$j_4 \left(\frac{i}{2^n} \right) = \frac{\theta_3 \left(\frac{i}{2^{n+1}} \right)}{\theta_4 \left(\frac{i}{2^{n+1}} \right)} = \frac{\theta_3(2^{n+1} i)}{\theta_2(2^{n+1} i)}$$

by Theorem 4 (ii)

$$= \frac{\theta_3(2^{n-1} i) + \theta_4(2^{n-1} i)}{\theta_3(2^{n-1} i) - \theta_4(2^{n-1} i)}$$

by (3.9) and (3.10)

$$= \frac{j_4(2^n i) + 1}{j_4(2^n i) - 1}.$$
Also, \(j_4(2z)^4 = \frac{\theta_3(z)^4}{\theta_4(z)^4} = \frac{\theta_3(z)^4}{\theta_3(z)^4 - \theta_2(z)^4} = \frac{1}{1 - \lambda(z)}. \) This completes the lemma.

In Lemma 15 (iii), let us take \(n = 0. \) Then we come up with \(j_4(i) = 1 \pm \sqrt{2}. \) By Lemma 15 (i), \(j_4(i) > 0 \) and so

\[(3.11) \quad \quad j_4(i) = 1 + \sqrt{2}. \]

Applying again Lemma 15 (i) and (ii) we obtain that \(j_4(2i) = \sqrt{2} \) and \(j_4(4i) = \sqrt{\frac{3 + \sqrt{2}}{2} - 1}. \) We claim at this stage that \(j_4(4i) \) cannot be an algebraic integer. Suppose that \(j_4(4i) \) belongs to the ring \(\mathcal{O} \) of algebraic integers. Then

\[\frac{\sqrt{2} + 1}{\sqrt{32}} \in \mathcal{O}, \text{ which implies } \frac{1}{\sqrt[8]{32}} \in \mathcal{O} \text{ because } \sqrt{2} + 1 \in \mathcal{O}^x.\]

We conclude from the above that

\[\left(\frac{1}{\sqrt[8]{32}}\right)^8 = \frac{1}{32} \in \mathcal{O},\]

which is a contradiction. Therefore \(j_4(4i) \) is not an algebraic integer. In order to overcome this obstacle we borrow the notion of normalized series from Conway-Norton’s paper ([1]).

Theorem 16. Let \(N(j_4)(z) = \frac{4}{j_4(z) - 1} + 2 = \frac{1}{q_4} + 0 + 2q_4^3 - q_4^7 - 2q_4^{11} + 3q_4^{15} + 2q_4^{19} + \cdots \) be the normalized generator of \(K(X(4)) \). Then for \(\tau \in \mathbb{Q}(-d) \cap \mathcal{O}, \) \(N(j_4)(\tau) \) is an algebraic integer.

Proof. Let \(j \) be the modular function whose Fourier expansion with respect to \(q \) is \(\frac{1}{q} + 744 + 196884q + \cdots \). Then \(j(\tau) \) is an algebraic integer for such \(\tau \). Note that \(J = \frac{j}{1728} \). By Theorem 14, we see that \(J = \frac{1}{108} \left(\frac{j_4^8 + 14j_4^4 + 1}{j_4^8 - j_4^4} \right)^3. \) Hence, substituting \(\frac{4}{N-2} + 1 \) for \(j_4 \), we obtain that

\[j = 2^4 \cdot \frac{(j_4^8 + 14j_4^4 + 1)^3}{(j_4^8 - j_4^4)^4} \]

\[= \frac{(N^8 + 224N^4 + 256)^3}{(N - 2)^4 N^4 (N^3 + 2N^2 + 4N + 8)^2} \text{ where } N = N(j_4)(\tau).\]
This implies that \(N(j_4)(\tau) \) is integral over \(\mathbb{Z}[j(\tau)] \) and hence \(N(j_4)(\tau) \) is integral over \(\mathbb{Z} \).

\[\square \]

4. Examples

Theorem 13 implies that any \(f \) in \(M_4(\Gamma(4)) \) is a homogeneous polynomial in \(x \) and \(y \) whose degree is \(k \). Furthermore the polynomial expression is unique due to the algebraic independency of \(x \) and \(y \). In this section we will describe the modular function \(j_4 \) in terms of \(\varphi \)-division values and Fricke functions. First, we recall the definition of the \(N \)-th division values of \(\varphi \):

\[\varphi_{N, \bar{a}}(\tau) := \varphi \left(\frac{a_1 \tau + a_2}{N}; L_\tau \right) \]

where \(\bar{a} = \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) \), \(L_\tau = \mathbb{Z} \tau + \mathbb{Z} \) and \(\varphi \) is the Weierstrass \(\varphi \)-function. Since \(\varphi(u; L) = \varphi(v; L) \) if and only if \(u \equiv \pm v \pmod{L} \), we see that

\[\varphi_{N, \bar{a}} = \varphi_{N, \bar{b}} \iff \bar{a} \equiv \bar{b} \pmod{N\mathbb{Z}^2}. \]

(4.1)

Now, define the reduced \(\varphi \)-division value \(\varphi_{N, \bar{a}}^* \) by

\[\varphi_{N, \bar{a}}^* := \sum_{t \pmod{N}} \sum_{d \equiv 1 \pmod{N} \atop d > 0} \mu(d) \frac{\varphi_{N, \bar{a}}}{d^2} \]

where \(\bar{a} \) runs \(\pmod{N} \) with \((a_1, a_2) = 1 \) and \(\mu \) is the Möbius function. Then we have \(\varphi_{N, \bar{a}}^* \in M_4(\Gamma(N)) \) and at the cusps of \(\Gamma(N) \)

\[\varphi_{N, \bar{a}}^* \left(-\frac{d}{c} \right) = \begin{cases} N^2 - \frac{N^2}{\sigma_{\infty}(N)} & \text{if } -\frac{d}{c} \text{ is } \Gamma(N)\text{-equivalent to } -\frac{a_2}{a_1}, \\ -\frac{N^2}{\sigma_{\infty}(N)} & \text{otherwise.} \end{cases} \]

(4.3)

For the standard facts mentioned above, we refer to [11], p. 171. By theorem 13, \(\varphi_{4, \bar{a}}^* \) is a homogeneous polynomial in \(x \) and \(y \) of degree 4. Thus we can write \(\varphi_{4, \bar{a}}^* \) as follows:

\[\varphi_{4, \bar{a}}^* = c_0 x^4 + c_1 x^3 y + c_2 x^2 y^2 + c_3 x y^3 + c_4 y^4 \]
for \(c_i \in \mathbb{C} \). Using (4.3) and the values of \(x \) and \(y \) at the cusps of \(\Gamma(4) \) (see Theorem 6), we can determine the coefficients \(c_i \). In fact,

\[
\begin{align*}
 c_0 &= -\frac{1}{4} \varphi_{4, a}^*(0) \\
 c_1 &= \frac{1}{4} \varphi_{4, a}^*(\infty) - \frac{1}{4} \varphi_{4, a}^* \left(\frac{1}{2} \right) - \frac{1}{4} i \varphi_{4, a}^*(-1) + \frac{1}{4} i \varphi_{4, a}^*(1) \\
 c_2 &= \frac{1}{2} \varphi_{4, a}^*(\infty) + \frac{1}{2} \varphi_{4, a}^* \left(\frac{1}{2} \right) + \frac{1}{4} \varphi_{4, a}^* (0) + \frac{1}{4} i \varphi_{4, a}^*(-2) \\
 c_3 &= \frac{1}{4} \varphi_{4, a}^*(\infty) - \frac{1}{4} \varphi_{4, a}^* \left(\frac{1}{2} \right) + \frac{1}{4} i \varphi_{4, a}^*(-1) - \frac{1}{4} i \varphi_{4, a}^*(1) \\
 c_4 &= -\frac{1}{4} \varphi_{4, a}^*(-2)
\end{align*}
\]

with \(i = \sqrt{-1} \). Recall that there are 6 distinct reduced \(\varphi \)-division values which correspond to the cusps of \(\Gamma(4) \). They are as follows:

\[
\begin{align*}
 s &= \infty, \quad \varphi_{4, \left(\frac{0}{1} \right)}^* = \frac{2}{3} x^4 + 4x^3 y + 4x^2 y^2 + 4xy^3 + \frac{2}{3} y^4 \\
 s &= 0, \quad \varphi_{4, \left(\frac{1}{0} \right)}^* = -\frac{10}{3} x^4 + \frac{2}{3} y^4 \\
 s &= 1, \quad \varphi_{4, \left(\frac{-1}{1} \right)}^* = \frac{2}{3} x^4 - 4ix^3 y - 4x^2 y^2 - 4ixy^3 + \frac{2}{3} y^4 \\
 s &= -1, \quad \varphi_{4, \left(\frac{1}{1} \right)}^* = \frac{2}{3} x^4 - 4ix^3 y - 4x^2 y^2 + 4ixy^3 + \frac{2}{3} y^4 \\
 s &= -2, \quad \varphi_{4, \left(\frac{1}{2} \right)}^* = \frac{2}{3} x^4 - \frac{10}{3} y^4 \\
 s &= \frac{1}{2}, \quad \varphi_{4, \left(\frac{-1}{2} \right)}^* = \frac{2}{3} x^4 - 4x^3 y + 4x^2 y^2 - 4xy^3 + \frac{2}{3} y^4.
\end{align*}
\]

Using the above result, we get

\[
\frac{\varphi_{4, \left(\frac{0}{1} \right)}^* - \varphi_{4, \left(\frac{1}{0} \right)}^*}{\varphi_{4, \left(\frac{1}{2} \right)}^* - \varphi_{4, \left(\frac{0}{1} \right)}^*} = \frac{-4x^4 - 4x^3 y - 4x^2 y^2 - 4xy^3}{-4x^3 y - 4x^2 y^2 - 4xy^3 - 4y^4}
\]

\[
= \frac{-4x(x^3 + x^2 y + xy^2 + y^3)}{-4y(x^3 + x^2 y + xy^2 + y^3)}
= \frac{x}{y} = j_4.
\]

In this way, one can have a field generator of \(K(X(4)) \) in terms of reduced \(\varphi \)-division values.
REMARK. (Generation of j_4 with Fricke functions) Recalling the definition of Fricke function f_{a_1,a_2} where $(a_1,a_2) \in \mathbb{Z}^2$ and both a_1 and a_2 are not multiple of N ([6], [14]), then,

$$f_{a_1,a_2} = -2^7 \cdot 3^5 \frac{G_4 G_6}{\Delta} \varphi_{N,\tilde{a}}$$

with $\tilde{a} = (\frac{a_1}{a_2})$.

From the equality $j_4 = \frac{\varphi_4(\frac{1}{2})^* - \varphi_4(\frac{d}{q})^*}{\varphi_4(\frac{d}{2})^* - \varphi_4(\frac{d}{q})^*}$ and (4.2), it follows that

$$j_4 = \frac{\sum_{t \equiv 0, dt \equiv 1 \mod 4} \mu(d) \mu(d)}{\sum_{t \equiv 0, dt \equiv 1 \mod 4} \mu(d) \mu(d)}(f_{t,0} - f_{0,t}).$$

In the above, consider the summation $\sum_{d>0, dt \equiv 1 \mod 4} \mu(d) \mu(d)$. Note that when $t = 0, 2$ there is no d satisfying the congruence equation $dt \equiv 1 \mod 4$. Now put $a = \sum_{d>0, dt \equiv 3 \mod 4} \mu(d) \mu(d)$ and $b = \sum_{d>0, dt \equiv 3 \mod 4} \mu(d) \mu(d)$. Then in (4.4),

$$j_4 = \frac{a (f_{1,0} - f_{0,1}) + b (f_{3,0} - f_{0,3})}{a (f_{1,2} - f_{0,1}) + b (f_{3,0} - f_{0,3})} = \frac{a (f_{1,0} - f_{0,1}) + b (f_{1,0} - f_{0,1})}{a (f_{1,2} - f_{0,1}) + b (f_{1,2} - f_{0,1})} \quad \text{by (4.1)}$$

$$= \frac{f_{1,0} - f_{0,1}}{f_{1,2} - f_{0,1}}.$$

Lemma 17. For n even, let $f \in M_2(\Gamma(4))$. If f has a Fourier expansion with rational coefficients, then it can be written as a homogeneous polynomial over \mathbb{Q} in x and y whose degree is n.

Proof. By Theorem 10,

$$f = \sum_{j=0}^{n} a_j x^{n-j} y^j, \quad a_j \in \mathbb{C}.$$

We must show that each a_j lies in \mathbb{Q}. Considering Fourier expansions of f and $x^{n-j} y^j$ gives

$$f = \sum_{i=0}^{\infty} b_i q_4^i, \quad b_i \in \mathbb{Q}$$

$$x^{n-j} y^j = \sum_{i=0}^{\infty} c_{ij} q_4^i, \quad c_{ij} \in \mathbb{Q}.$$
Plugging (4.5) into the above and comparing the coefficients of \(q_4 \)-expansion, we get the following linear system:

\[
(4.6) \quad (c_{ij})_{i \geq 0, \ 0 \leq j \leq n} \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix} = (b_i)_{i \geq 0}.
\]

Note that the \(j \)-th column of the matrix \((c_{ij})\) corresponds to the Fourier coefficients of \(x^{n-j}y^j \). Since \(x^n, x^{n-1}y, \ldots, y^n \) are linearly independent over \(\mathbb{C} \), the matrix \((c_{ij})\) has rank \(n + 1 \). This allows us to choose \(n + 1 \) rows from \((c_{ij})\) which are linearly independent. Without loss of generality, we may assume that the matrix \((c_{ij})_{0 \leq i,j \leq n}\) is invertible. Now, instead of (4.6), consider the following system:

\[
(c_{ij})_{0 \leq i,j \leq n} \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} b_0 \\ \vdots \\ b_n \end{pmatrix}.
\]

Multiplying through by the inverse of the matrix \((c_{ij})_{0 \leq i,j \leq n}\), we have \(a_0, \ldots, a_n \in \mathbb{Q} \) as desired.

Theorem 18. \(\mathbb{Q}(j_4) \) coincides with the field \(\mathcal{F}_4 \) of all the modular functions of level 4 whose Fourier expansions with respect to \(q_4 \) have rational coefficients.

Proof. By [14], Proposition 6.9 we know that \(\mathcal{F}_4 = \mathbb{Q}(J(z), J(4z), f_{1,0}(z)) \). Since \(x \) and \(y \) have rational Fourier coefficients, so also has \(j_4 \). Hence, \(\mathbb{Q}(j_4) \) is contained in \(\mathcal{F}_4 \). For the reverse inclusion we need to show that \(J(z), J(4z), f_{1,0}(z) \in \mathbb{Q}(j_4) \). From Theorem 14 (ii) we see that \(J(z) \in \mathbb{Q}(j_4^{4}(z)) \), and so \(J(z) \in \mathbb{Q}(j_4) \). Next, observe that \(J(4z) \in \mathbb{Q}(j_4^{4}(4z)) = \mathbb{Q}(x^{4}(4z)) \). To claim \(J(4z) \in \mathbb{Q}(j_4) \), it is enough to show that \(x^{4}(4z) \) and \(y^{4}(4z) \) are homogeneous polynomials over \(\mathbb{Q} \) in \(x \) and \(y \) of degree 4. By an example in §3, we obtain \(\frac{1}{2}(x + y) = \theta_3(2z) \). Simple calculation leads us to \(\frac{1}{2}(x - y) = \theta_2(2z) \). Therefore, \(x^{4}(4z) = \theta_3(2z)^4 = \frac{1}{2}(x + y)^4 \) and \(y^{4}(4z) = \theta_4(2z)^4 = \theta_3(2z) \theta_2(2z) = \frac{1}{2}(x + y)^4 - \frac{1}{2}(x - y)^4 \). Finally, we consider the Fricke function \(f_{1,0}(z) \). Recall that \(f_{1,0} = -27 \cdot 3^5 \frac{G_6}{\Delta} \). As is shown in the proof of [14], Proposition 6.9 or [11], pp. 169-170, \(\pi^{-2} \theta_{4}(\frac{x}{y}) \) has rational Fourier coefficients. On the other hand \(\pi^{-4}G_4, \pi^{-6}G_6 \) and \(\pi^{-12}\Delta \) have the same
property. Furthermore, they can be viewed as modular forms of level 4. Thus, by Lemma 17, they can be written as homogeneous polynomials over \mathbb{Q} in x and y. This implies that $f_{1,0}(z) \in \mathbb{Q}(j_4)$.

5. Application to quadratic forms

Lemma 19. (i) Let $f \in M_{2k}(\Gamma(1))$. Then f is a symmetric homogeneous polynomial over \mathbb{C} in $x^4(z)$ and $y^4(z)$ whose degree is k.

(ii) Let $g \in M_{2k}(\Gamma(2))$. Then g is a symmetric homogeneous polynomial in $x^2(z)$ and $y^2(z)$ whose degree is $2k$.

Proof. By Theorem 9 and 10,

$$f(z) = p_1(X(z), Y(z)) = p_2(x(z), y(z))$$

where p_1 and p_2 are homogeneous polynomials in two variables with deg $p_1 = k$ and deg $p_2 = 4k$. We claim that p_1 and p_2 are symmetric. In fact,

$$p_1(X, Y) = f|_{ST}$$ since $f \in M_{2k}(\Gamma(1))$

$$= p_1(X|_{ST}, Y|_{ST}) = p_1(Y, X)$$ by Theorem 4.

Also,

$$p_2(x, y) = f|_{T}$$ since $f \in M_{2k}(\Gamma(1))$

$$= p_2(x(z + 2), y(z + 2)) = p_2(y, x)$$ by Corollary 5.

Recall from Theorem 12 that $X = \frac{1}{4}(x^2 - y^2)^2$ and $Y = \frac{1}{4}(x^2 + y^2)^2$. Substituting x for x and $-y$ for y we see that X and Y are unchanged. This implies by (5.1) that $p_2(x, -y) = p_2(x, y)$, that is, p_2 involves terms whose degree of y is even. Also, substituting x for x and iy for y, X and Y interchange with each other. Since p_1 is symmetric, by (5.1) we have $p_2(x, iy) = p_2(x, y)$, i.e., p_2 has terms whose degree of y is a multiple of 4.

In the case of (ii), p_2 is symmetric and the equality $p_2(x, -y) = p_2(x, y)$ still holds. The assertion follows from these facts.

For $p(x) \in \mathbb{C}[x]$, we call $p(x)$ symmetric if $p(x) = x^k p(\frac{1}{x})$ with $k = \deg p(x)$.

Corollary 20. (i) Let $f_1, f_2 \in M_{2k}(\Gamma(1))$. Then,

$$\frac{f_1(z)}{f_2(z)} = \frac{p(j_4^4(z))}{q(j_4^4(z))}$$
where p and q are symmetric polynomials in one variable whose degrees are less than or equal to k.

(ii) Let $g_1, g_2 \in M_{2k}(\Gamma(2))$. Then,

$$\frac{g_1(z)}{g_2(z)} = \frac{p(j_4^2(z))}{q(j_4^2(z))}$$

where p and q are symmetric polynomials of degree less than or equal to $2k$.

Proof. Obvious. \qed

Now, we will consider the theta series associated to quadratic forms. Let $Q(n, 1)$ be the set of even unimodular positive definite integral quadratic forms in n-variables. Then $n \equiv 0 \mod 8$ ([12], ch.V). For $A[X]$ in $Q(n, 1)$, the theta series defined by

$$\theta_A(z) = \sum_{X \in \mathbb{Z}^n} e^{\pi i A[X]} (z \in \mathcal{H})$$

is a modular form of weight $\frac{n}{2}$ and level 1. In cases $n = 8$ and 16, the quotients $\frac{\theta_A}{\theta_B}$ are 1 for $A[X], B[X] \in Q(n, 1)$. If $n \geq 24$, then we have the following theorem.

THEOREM 21. For any two quadratic forms $A[X], B[X] \in Q(n, 1)$,

$$\frac{\theta_A(z)}{\theta_B(z)} = \frac{p(j_4(z))}{q(j_4(z))}$$

where p and q are symmetric polynomials over \mathbb{Q} in j_4 of degree n.

Proof. From Lemma 17 and Lemma 19 we see that θ_A and θ_B are symmetric homogeneous polynomials over \mathbb{Q} in $x(z)$ and $y(z)$ whose degree is n. In both cases the coefficients of the term x^n do not vanish because $\theta_A(0) = \theta_B(0) = 1, x(0) \neq 0$ and $y(0) = 0$ by Appendix A. Now the result follows. \qed

6. Examples

In case $n = 24$, we are able to completely determine the polynomials discussed in Theorem 21.
Lemma 22. Let E_6 be the Eisenstein series of weight 6 of level 1 with $E_6(\infty) = 1$ and $F = (2\pi)^{-12}\Delta$ where Δ is the modular discriminant. Then we have

$$E_6 = -\frac{1}{64}x^{12} + \frac{33}{64}x^8y^4 + \frac{33}{64}x^4y^8 - \frac{1}{64}y^{12}$$

$$F = \frac{1}{2^{16}}x^4y^4(x^4 - y^4)^4.$$

Proof. By Lemma 17 and Lemma 19, E_6 can be written as

$$E_6 = ax^{12} + bx^8y^4 + bx^4y^8 + ay^{12}$$

for some $a, b \in \mathbb{Q}$. Evaluating both sides at some cusps of $\Gamma(4)$, we will determine a and b. First, at $s = 0, 1 = E_6(0) = a \cdot x(0)^{12} = a \cdot (-2i)^{12} = a \cdot (\frac{-1}{64})$; hence $a = -\frac{1}{64}$. Next, at $s = \infty, 1 = E_6(\infty) = a + b + b + a = 2 \cdot (-\frac{1}{64}) + 2b$ and hence $b = \frac{33}{64}$. Now, consider the case of F. As is well known ([10], p. 222), we have the following equality:

$$F = \frac{1}{2^8}\theta_2^8\theta_3^8\theta_4^8$$

$$= \frac{1}{2^8}X^2Y^2(Y - X)^2 \text{ by the relation } \theta_3^4 = \theta_2^4 + \theta_4^4 \text{ and Fact 2}$$

$$= \frac{1}{2^8}\frac{1}{4^4}(x^4 - y^4)^4(x^2y^2)^2 \text{ by Theorem 12}$$

$$= \frac{1}{2^{16}}x^4y^4(x^4 - y^4)^4.$$

This completes the lemma.

\[\square\]

Proposition 23. For $A \in \mathbb{Q}(24, 1)$,

$$\theta_A(z) = a^2x^{24} + (2ab + \frac{g_A}{2^{14}})x^{20}y^4 + (b^2 + 2ab - \frac{g_A}{2^{14}})x^{16}y^8$$

$$+ (2a^2 + 2b^2 + \frac{3g_A}{2^{15}})x^{12}y^{12}$$

$$+ (b^2 + 2ab - \frac{g_A}{2^{14}})x^8y^{16} + (2ab + \frac{g_A}{2^{16}})x^4y^{20} + a^2y^{24}$$

where $a = -\frac{1}{64}, b = \frac{33}{64}$ and $g_A = c_A + \frac{762048}{691} = r_A(1) + 1008 \in \mathbb{Z}$ depending on Niemeier's classification ([8]).

Proof. Since E_{12} and F span $M_{12}(\Gamma(1))$, we can express

(6.1) $$\theta_A = E_{12} + c_AF = E_6^2 + g_AF.$$
By comparing q-expansion we get $g_A = c_A + \frac{762048}{691}$. Now, plugging the results in Lemma 22 into (6.1), we obtain the assertion. \hfill \Box

Appendix A

For 6 cusps of $\Gamma(4)$, we have the following table:

<table>
<thead>
<tr>
<th></th>
<th>∞</th>
<th>0</th>
<th>1</th>
<th>-1</th>
<th>-2</th>
<th>$\frac{1}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Y</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>λ</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>$\sqrt{-2i}$</td>
<td>-i</td>
<td>-i</td>
<td>0</td>
<td>-i</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>$\sqrt{-2i}$</td>
<td>i</td>
</tr>
<tr>
<td>j_4</td>
<td>1</td>
<td>∞</td>
<td>i</td>
<td>-i</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Appendix B

From Proposition 23, the formula (9) in [4] and following Niemeier's notation,

$$
\theta_{3 \times E_8}(z) = \theta_{E_8} \oplus D_{4}(z) = \frac{1}{4096} x^{24} + \frac{21}{2048} x^{20} y^4 + \frac{591}{1024} x^{16} y^8 + \frac{707}{512} x^{12} y^{12} + \frac{591}{1024} x^8 y^{16} + \frac{21}{2048} x^4 y^{20} + \frac{1}{4096} y^{24}
$$

$$
\theta_{E_7} \oplus E_7 \oplus D_{10}(z) = \theta_{E_7} \oplus A_{17}(z) = \frac{1}{4096} x^{24} + \frac{3}{512} x^{20} y^4 + \frac{272}{1024} x^{16} y^8 + \frac{85}{128} x^{12} y^{12} + \frac{663}{1024} x^8 y^{16} + \frac{3}{512} x^4 y^{20} + \frac{1}{4096} y^{24}
$$

$$
\theta_{D_{24}}(z) = \frac{1}{4096} x^{24} + \frac{33}{2048} x^{20} y^4 + \frac{495}{4096} x^{16} y^8 + \frac{748}{1024} x^{12} y^{12} + \frac{495}{1024} x^8 y^{16} + \frac{33}{2048} x^4 y^{20} + \frac{1}{4096} y^{24}
$$

$$
\theta_{D_{12} \oplus D_{12}}(z) = \frac{1}{4096} x^{24} + \frac{15}{2048} x^{20} y^4 + \frac{639}{4096} x^{16} y^8 + \frac{689}{1024} x^{12} y^{12} + \frac{639}{1024} x^8 y^{16} + \frac{15}{2048} x^4 y^{20} + \frac{1}{4096} y^{24}
$$

$$
\theta_{3 \times D_8}(z) = \frac{1}{4096} x^{24} + \frac{9}{2048} x^{20} y^4 + \frac{687}{4096} x^{16} y^8 + \frac{671}{1024} x^{12} y^{12} + \frac{687}{1024} x^8 y^{16} + \frac{9}{2048} x^4 y^{20} + \frac{1}{4096} y^{24}
$$

$$
\theta_{D_8 \oplus A_{13}}(z) = \frac{1}{4096} x^{24} + \frac{21}{2048} x^{20} y^4 + \frac{675}{4096} x^{16} y^8 + \frac{1351}{2048} x^{12} y^{12} + \frac{675}{1024} x^8 y^{16} + \frac{21}{4096} x^4 y^{20} + \frac{1}{4096} y^{24}
$$

$$
\theta_{1 \times E_6}(z) = \theta_{E_6} \oplus D_7 \oplus A_{17}(z) = \frac{1}{4096} x^{24} + \frac{15}{2048} x^{20} y^4 + \frac{699}{4096} x^{16} y^8 + \frac{1333}{2048} x^{12} y^{12} + \frac{699}{1024} x^8 y^{16} + \frac{15}{4096} x^4 y^{20} + \frac{1}{4096} y^{24}
$$
\[\theta_{4 \times D_6}(z) = \theta_{D_6} \bigoplus A_8 \bigoplus A_8(z) = \frac{1}{4096} x^{24} + \frac{3}{1024} x^{20} y^4 + \frac{711}{4096} x^{16} y^8 + \frac{331}{512} x^{12} y^{12} + \frac{711}{4096} x^8 y^{16} + \frac{3}{1024} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{D_6} \bigoplus D_6 \bigoplus A_4 \bigoplus A_1(z) = \frac{1}{4096} x^{24} + \frac{9}{4096} x^{20} y^4 + \frac{723}{4096} x^{16} y^8 + \frac{1315}{2048} x^{12} y^{12} + \frac{723}{4096} x^8 y^{16} + \frac{9}{4096} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{3 \times A_8}(z) = \frac{1}{4096} x^{24} + \frac{21}{8192} x^{20} y^4 + \frac{717}{4096} x^{16} y^8 + \frac{2639}{4096} x^{12} y^{12} + \frac{717}{4096} x^8 y^{16} + \frac{21}{8192} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{A_4}(z) = \frac{1}{4096} x^{24} + \frac{69}{8192} x^{20} y^4 + \frac{621}{4096} x^{16} y^8 + \frac{2733}{4096} x^{12} y^{12} + \frac{621}{4096} x^8 y^{16} + \frac{69}{8192} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{A_1} \bigoplus A_1(z) = \frac{1}{4096} x^{24} + \frac{33}{8192} x^{20} y^4 + \frac{693}{4096} x^{16} y^8 + \frac{2675}{4096} x^{12} y^{12} + \frac{693}{4096} x^8 y^{16} + \frac{33}{8192} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{6 \times D_1}(z) = \theta_{D_1} \bigoplus (4 \times A_3)(z) = \frac{1}{4096} x^{24} + \frac{3}{2048} x^{20} y^4 + \frac{735}{4096} x^{16} y^8 + \frac{653}{1024} x^{12} y^{12} + \frac{735}{4096} x^8 y^{16} + \frac{3}{2048} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{6 \times A_6}(z) = \frac{1}{4096} x^{24} + \frac{15}{8192} x^{20} y^4 + \frac{729}{4096} x^{16} y^8 + \frac{2621}{4096} x^{12} y^{12} + \frac{729}{4096} x^8 y^{16} + \frac{15}{8192} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{9 \times A_4}(z) = \frac{1}{4096} x^{24} + \frac{9}{8192} x^{20} y^4 + \frac{741}{4096} x^{16} y^8 + \frac{2603}{4096} x^{12} y^{12} + \frac{741}{4096} x^8 y^{16} + \frac{9}{8192} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{9 \times A_2}(z) = \frac{1}{4096} x^{24} + \frac{3}{4096} x^{20} y^4 + \frac{747}{4096} x^{16} y^8 + \frac{1297}{4096} x^{12} y^{12} + \frac{747}{4096} x^8 y^{16} + \frac{3}{4096} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{12 \times A_4}(z) = \frac{1}{4096} x^{24} + \frac{3}{8192} x^{20} y^4 + \frac{753}{4096} x^{16} y^8 + \frac{2585}{4096} x^{12} y^{12} + \frac{753}{4096} x^8 y^{16} + \frac{3}{8192} x^4 y^{20} + \frac{1}{4096} y^{24} \]

\[\theta_{24 \times A_1}(z) = \frac{1}{4096} x^{24} + \frac{759}{4096} x^{16} y^8 + \frac{121}{256} x^{12} y^{12} + \frac{759}{4096} x^8 y^{16} + \frac{1}{4096} y^{24} \]

\[\theta_{C_0}(z) = \frac{1}{4096} x^{24} + \frac{3}{4096} x^{20} y^4 + \frac{771}{4096} x^{16} y^8 + \frac{1279}{2048} x^{12} y^{12} + \frac{771}{4096} x^8 y^{16} - \frac{3}{4096} x^4 y^{20} + \frac{1}{4096} y^{24} \]

References

Korea Advanced Institute of Science and Technology
Department of Mathematics
Taejon 305-701, Korea
E-mail: kch@math.kaist.ac.kr
jjkoo@math.kaist.ac.kr