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1. Introduction form analytical solution for the nonlinear pure

bending deformation of the isotropic hyperelastic

In this paper we treated the very classical prob- compressible solid plate in the plane strain state.
lem, i.e., "pure bending of solid plate”. Even The closed form solution obtained in this paper is
though the pure bending problem is classical, and very important for the large bending deformation,
very important in its applications, e.g., in the since it is expected that even though the bending
application to the metal forming problem™®, its angle exceeds small degrees the linear solution is
complete analytical nonlinear solution is not easy not correct. The contribution of this closed form
to obtain. Hence only the linear small deforma- nonlinear solution can be found in cold forming
tion theory is available in the engineering text- processes of metal sheets. More specifically, this
book™ and the numerical finite element method is solution is very useful in the investigation of the
currently the only tool for its analysis®®“®, onset of bifurcation instabilities which occur usu-
However, in this paper we obtained the closed ally in the highly nonlinear large pure bending
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deformation of a ductile metal sheet®.

Hence the solution process treated in this paper
is very helpful for the accurate structural analysis
of solids. The numerical values of analytical solu-
tions are computed for the bending angle( ¢ ) of
30 degrees. the Young’s modulus(E) of 1.0 Pa
and Poisson’s ratio(v) of 0.25, using the Simp-

son’s rule®.

2. Problem Description

A solid plate of initial thickness 2H is subject to
plane strain pure bending. The solid plate is
assumed to be made of a compressible isotropic
hyperelastic material with the following strain
energy density

WA JI)=AI’>+BI. -(4A+BJI.-B (1)

where I, =tC, I, =Det C (C=F"-F :the sec-
ond order right Cauchy Green tensor, F=J+uV
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Fig. 1 Pure Bending of Solid Plate in Plane Strain State
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: the second order deformation gradient tensor, u
: the displacement vector), A and B are con-
stants.

2.1 Kinematics of Pure Bending

The pure bending deformation is assumed to
occur in the plane strain state. Hence the defor-
mation state is two dimensional. If A, and A,
are principal stretch ratios in the radial and the
angular direction respectively, then the following
relations are satisfied

d
A,:d—’, A= =K 2)

L_r
£ L R

where, K is the curvature of unstrecthed fiber,

1 . .
and R= - is the radius of curvature. & is the

initial position of the material point P and r is the
current position of the material point P. ¢ is the

length of the current stretched fiber and L is the
length of the unstretched fiber as shown in the
Fig 1. ¢ is the bending angle and M is the bend-
ing monent.

2.2 Principal Stresses

If r and § are the coordinates in the radial and
the angular direction respectively, r and g are the
principal directions. Hence principal stresses
are 0, =0,,, O, =0, since 6,,=0. For the
isotropic hyperelastic solid, the principal Cauchy
stresses are

o, =%=} xij—;:,(no sum) €)]
, where J=A, A, in two dimensional space.
Thus
1 dW 1 dW
L\ AP A 4
P, dy, P A dr, @
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2.3 The Equilibrium Equation
Since it is assumed that :%():0&0,67 =0,

the only nontrivial equilibrium equation is along
the radial direction,

do, 0,-0

ie.,
dr r

0 (5)
2.4 Boundary Conditions

The radial stress is assumed to be zero on the
upper and the lower surfaces, or the traction is
free,

ie, 0,=0 at r=R"&r=R" 6)

And on the lateral surfaces,

R*
e

0,-r dr=M (M: bending moment) (7)

®

& _[:_ 0,dr =0(no: axial force)

3. The Analytical Solution

3.1 The Solution in terms of Principal Stretch Ratios

Using the relation I, =tr C=A2+4,}, I, =
Det C=A4,% 1,7, J=Det F=1, X,, the strain
energy density W(I_, I, ) of (1) becomes

W, I)=AR2+1,2)7 +BR,% +1,)

-(4A+B)* A,2-B 9)

Using (8), the stresses given by (4) become

0,=0, = 2::—‘{2A()\.,2 -2,2)+B(1-1,2)}

2

0, =Cgy = 2%2—{2A(7»22 -AH+B(A-AH}) (10)

1

Thus, if we know the principal stretch
ratios 4, and 4,, we can obtain the solutions
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0,, 0,from (10).

3.2 The Analytical Closed Form Solution

Noting the relations (2) and (10), it is manifest

. d
that o, and o0,are functions of r and ==L

g’

And hence O; and O;are functions of only g,
Inserting the relation (2) into (10), and then the
resulted O, and O, into the equilibrium equation
(5), we may obtain the equation of r in terms of
& . Solving this resulted differential equation, we
may obtain Oy, O, in terms of & and «. The
radius curvature x is obtained by prescribing the
bending moment M or the bending angle ¢, i.e.,

by L=R¢=%

or K=

1an

=~ |e

The curvature xis also related to M by the
equation (7), where R~ &R* are evaluated by
the condition ©,(R7)=0,(R")=0,

or R™"=r(-H), R* =r(H) (12)

Since O, in (7) is a function of k , (7) is the
relation between x & M. From the equation (7),
we may obtain « or ¢ for the given M. After
some tedious algebra, the differential equation for

r(E), dromd(y=30. is

ti "E)=—
noting r’(§) &
obtained as

dg

3A()*'Y +B()'Y - (2A + B){(x)* ()Y

- A(()*y = B(()*y =0 (13)

The above equation is a highly nonlinear differ-
ential equation for r(&). After quite some diffi-
cult integrating of the equation (13), we may
obtain the following implicit closed form analytical
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solution for r( &)

1
KE+H)==[ 10, wdy (1)

with y= ) -1, - p<y<pu The f is evaluat-
ed by the relation

L
= [ 1f(n mPdy (15)

The f(¥, Win (14) and (15) is given by the
equation
(y+1>{2A(y+1)+3y+J4{2A(y+1)+ By - 3844 + B - )
64

f(yv ”)=
(16)

And then the principal stretch ratios A, and 2,
are given by

1
- i

A =(D? an

1
A= [mf(y’ IJ«):|

With above A, and A,., we may compute the
stresses 0, and o, by the equation (10).

Using the above implicit closed form solution
(14)~(17), we may compute o, and o, given by
(10) by the following calculation procedure
aumerically.

Step 1. for given x (or M) & H, we may evaluate
p by (15) numerically.

rklor M), £& H and u
obtained in Step 1, we may evaluate y by
(14) numerically.

Step 3, with y & p obtained in Step 1 & Step 2,
we may evaluate A,, A, by (17).

3tep 4. with A,, &, obtained in Step 3. we may
evaluate o, and o, by (10).

Step 2. for given

That is, taking the above procedure, for given
E, k(or M) & H we may obtain the analytical
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solution o, & o©,. We can evaluate the integral
in (14) and (15) by using the numerical method,
e.g., Simpson’s method & Romberg integration®.

4. Computation Results and Discussions

For the compressible Nechooken material, we
may compute the analytical solutions given in the
previous section numerically. For the Neohookean
material the material constants A and B are
related to E(Young's Modulus) and v(Poisson’s
Ratio) by

1 E

1=V B:-l.i. 1 (18)
4 1+v 1-2v

Using thd above relation, the analytical results,
computed numerically for E=1.0 Pa, and »=0.25
. are given in the Table 1 and Fig. 2. For the
guarantee of accuracy, the eight effective numbers
are used in the numerical computation.

From the table and figure, we may note that
the radial stress is not zero for the large pure
bending deformation even though its absolute
value is still smaller than the absolute value of
the angular stress, while the radial stress is zero,
i.e., 04 = EE/R, o, =0in the linear small defor-
mation theory”. And the similar results are
obtained in the analysis of bifurcation phenomena
in pure bending of the incompressible plate®. The
fact that the radial stress is not zero for the large
pure bending deformation physically means that
while the bending deformation becomes larger and
larger the radial deformation towards the center
of radius of curvature is required more and more
and this is due to the negative nonzero radial
stress, on the other hand the radial deformation
in the linear bending theory is very small negligi-
bly which does not need the radial stress. It is
interesting that the unstretcched fiber (Gg =0)
is higher than the center line fiber(& =0) as
shown in Fig. 2. This phenomenon means that
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Table 1 Computed Analytical Results for Nonlinear Pure Bending

Plate Length(L) 10m
Bending Angle( ¢) 30 °
Input Data Half Heigth(H) 025 m
Young’s Modulus(E) 1.0 N/m*
Poisson’s Ratio( v ) 0.25
Computed Curvature (K) 0.52359867
Bending Moment (M) 0.0052829826 N - m
reference coordinate (£) | cwrent coordinate (r) | radial stress(o1 or g«) | angular stress (0, or Oy)

{m) (m) (N/m?) (N/m?)
-0.25 1.6507755 -0.36781695 x 107 -0.11196321
-0.22 1.6819258 -0.19854120% 107 -0.10229635
-0.19 1.7128982 -0.37059077x 107 -0.91830287x10™"
-0.16 1.7436954 -0.51640001 x 107 -0.80542658 % 10™"
-0.13 1.7743166 -0.63615437 x 10™ -0.68412414x 10™
-0.10 1.8047647 -0.73001148 x 107 ~0.55417403x 10"
-0.70 1.8350419 ~0.79808465 X 107 -0.41535818% 10
-0.40 1.8651522 -0.84045067 X 107 -0.26745521 x 10™*
-0.10 1.8950961 -0.85714728 X 107 -0.11026581 % 10™"

0.0 1.9050417 -0.85701141% 107 -0.55765757% 10°“
0.10 1.9149688 -0.85402454 x 107 -0.20680204% 10
0.40 1.9446468 -0.82794596 x 107 0.17293534x 10"
0.70 1.9741711 -0.77615394 % 107 0.35601346 % 10°*
0.10 2.0035448 -0.69858304 % 107 054890428 x 107
0.13 2.0327752 -0.59513382x 107 0.75209520% 10™
0.16 2.0618687 -0.46568104 X 107 0.96565466 % 10~
0.19 2.0508317 -0.31007793 % 107 0.11897308
0.22 2.1196705 -0.12815764 x 10 0.14244521
025 21377718 -0.3084676 X 107" 0.15777863

Iu Jag
‘ Pa Apa
0.15777863
-0.25 0 : 0.25 - 0.
\‘\LLL_,LU/ i > st
- 0.00957 - 0.11196321
<radial stress> <angular stress>

Fig. 2 Stresses in Nonlinear Pure Bending
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while the bending deformation becomes larger and

larger the absolute value of angular stress in the

upper part of the plate (above the unstretched
fiber) becomes larger than the absolute value of
angular stress in the lower part of the plate
(below the unstretched fiber).
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