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ABSTRACT

Elastic wave scattering from an acoustically rigid or soft object is studied and compared
with the acoustic wave scattering. The behavior of phases as well as magnitudes of partial
waves and their total summation of scattered wave are numerically analyzed and discussed.
The effect of mode conversion, which occurs between longitudinal and transversal waves in

elastic wave scattering, on the magnifudes and phases of scattered waves is identified.
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authors such as Morse and Ingardm. Bowman,
1. Introduction et al. ®, etc. The scattering of waves s

involved with complicated physical phenomena

The scattering of acoustic or elastic wave is a
phenomenon which can easily be observed in
nature. The problem of wave scattering has
become a classical subject since the pioneer
study by Lord Rayleighm and its theoretical
basis has been well-established by numerous
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such as reflection, diffraction and refraction. If the
object (scatterer) is acoustically impenetrable,
the energy of the incident wave can not
penerate into the object and consequently the
scattering mechanism becomes relatively simple.
We have two extreme cases for the impenetr-
able objects :
impedance is infinite, and the other one is soft

one is rigid case of which acoustic
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case of which acoustic impedance is zero. This
raper deals with the scattering of acoustic or
elastic wave from a rigid or soft infinitely-long
cylindrical object. Although the wave scattering
f-om impenetrable objects can be regarded as a
lassical problem, the magnitude of the scatiered
v7aves has usually been studied, while the study
c¢n the phase behavior has not been well
established.

The importance of the phase of the scattered
vsaves has recently been issued by Rhee and
Park'™ for the case of resonance scattering(sq)
f acoustic waves, which is related with the
¢igenvibration of the elastic penetrable objects
excited by the standing wave formed inside the
cbjects. For a penetrable object, the vibrational
rasonance information of the scatterer is mixed
with the acoustic background in the scattered
vwave. In many cases the acoustic background
can be approximated as the scattering from
1 npenetrable objects. According to Rhee and
Park'". it is important to understand the exact
tehavior (for both phase and magnitude) of the
¢coustic  background for the isolation of
ibrational resonance information of the elastic
[ enetrable objects.

In this paper, we study the behavior of phase
¢s well as magnitude of the scattered wave for
ccoustic  and elastic wave scattering from
1npenetrable objects. Especially, the effect of mode
conversion, which occurs between longitudinal
¢nd shear waves in elastic wave scattering, on
the magnitude and phase of partial waves of
ccattered wave is to be discussed.

2. Acoustic Wave Scattering

Let us consider an infinite plane acoustic wave
5 exp i (kX — wt) with a propagation constant
t=w/ c. where c¢ is the speed of sound in the
fluid medium, incident along the X - axis on a
rigid or soft cylinder of radius a whose axis is
coincides with the Z axis (Fig. 1). The acoustic
1 npedance of the rigid (soft) cylinder is infinite
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Fig. 1 Schematic of wave scattering from a cylind-
rical object

(zero) so that the incident wave can not
penetrate into the cylinder at all. At a point
P(r,¢) located in the fluid surrounding the
cylinder, it produces the following scattered field
P :

P (r,$)= p, E"Ogni”An ()H P (kr)cos ng, "

where the argument x of the cylindrical
functions is a nondimensionalized frequency
defined as x=ka=wa/ c.
By applying a set of appropriate boundary
conditions, 1ie., continuities of stresses and
displacements on the boundary surface of the
cylinder, the unknown scattering coefficient A,
is determined as follows"' :
For a rigid cylinder,

r J' (x)
A = A = - n
n(x) n(x) H:]? (x) (2)
For a soft cylinder,
J (%)
A, () = 4,(x)° = -2
n(x) n (x) H,(,l)(x) (3)

where p, is the incident pressure amplitude, ¢,
is the Neumann factor (e,=2—6,). J, and
HY are the Bessel function and the Hankel

function of the first kind, respectively. The
prime denotes differentiation with respect to the
argument. By wusing the asymptotic form of
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Hankel function, the far-field scattered pressure
can be expressed as

P“(¢)=poeil""fdibge,,A"(x)cosngt,r >>a. )

The form function fo is defined as an infinite
summation of normal modes or partial waves
with normal mode number =

fo() = ( g7 Zf<¢>

n=0

2 ©
= ‘,E n2=20£,,A,,(x)cosn¢ (5)

2. Elastic Wave Scattering

2.1 P wave incidence case

A plane P (Longitudinal) wave incident
along the X axis can be expressed as a partial
wave series :

Pine = Pp CXP l(kpX - at) s

=0, £,i"J,(k,r)cosng )

where k,=w/c, is the longitudinal wave
In Eq. (6) the time dependence
exp (—iwt) is omitted in the right hand side
because steady state is being studied. It

produces scattered elastic waves which have the
following form of potentials :

number.

Ze i"AHD(k, r)cosn¢ 7

and

"};e i"B H" (k r)smn¢ 8)

where k,=w/ ¢, Is the transversal wave number,

Equations (7) and (8) represent outgoing P
and S(Shear) waves with wave number k&, and
k,, respectively. In Eq. (8) the incident P wave

generates an outgoing S wave, which represents
a phenomenon known as mode conversion. By
applying a set of appropriate boundary conditions,
the unknown scattering coefficients A, and B,
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are determined as' :

For a rigid cylinder,

A7 = -Rea,; a, /a“ ap
" - .n
-Rea,, ay|f lay ay|, (9a
B = a, -—Rea,| fla, a,
n \
u —Reay, 21 x|, (9b)
where

a, =x,HY (x,)a, =nH® (x,),a, =-nH" (x,),

=-xH ,‘,”’(x,), X, =k,.8 and the superscript »
denotes rigid.
For a soft cylinder,

. _|~Reby by| [Iby by
" |=Reby  bylf by by, (10a)
B = bu _Rebu bn blz
" b, =Reby|/ b, by, (10b)
where

b, = —xsz,(,”(xp)— 2po,(,” (x,)+ 2n2H,(,’)(xp), i
b, =-2nH®(x,)+2nx HY (x,),

by =2nH P (x,) - 2nx H (x,),

by =x"HP (x)+2x,HY (x,)~27°H " (x,)

and the superscript s denotes soft.
The far field form function f. is defined as

an infinite summation of partial waves :

r2@) = Zf”(¢) J zeAcosn¢ an

P 2 2 B,
F(p= Zf (#) = ,/ et smn¢ (12)

2.2 S wave incidence case
A plane S wave incident along the X axis can
be expressed as a partial wave series :

Ve = Vo XPI(k,X =) = W02 &,i"J,(k)cosng
. n=0

(13)
In Eq. (13) the time dependence exp (—iwt) is
omitted in the right hand side because steady
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state is being studied. It produces scattered
eiastic waves which have the following form of
potentials:

Q. =2 &i"CHDY (k,r)sinng

n=0

(14)
ard

Vo = 28,i"D,HY (k r)cosng

n=0 .

(15)

B applying a set of boundary conditions, the

ur known scattering coefficients C, and D, are

. (469) .
determined as .

For a rigid cylinder,

Cr = —Rec;, ¢yl fley oy

" |FRecy cplf lea cn , (16a)
D= ¢, ~Recy| fley ¢y

" lea —Recy, 2 x|, (16b)

viere, C€u =4y, Cp = =Gy, €y ==Ay, Cp» =4yp»n and
a; is defined in Eq. (9).

For a soft cylinder,

C:Z‘Redlz dlz/ljn d,
" |-Red,, dy|/ld, d, (17a)
D‘:d” _Redll du dll
" [, -Red,|/ |d, dy|, (17b)

vwiere Ay =by,dy=-b,, dy=-by, dy=by, and
h.. is defined in Eq. (10),
The far field form function f. is defined as

an infinite summation of partial waves :

3p = S p — _2_§ C :
KO Zf @)= e BOCasang

85 - o £ —_ 'L it
O :Z,f <¢>-,/m_x‘ Z,6.D, cosng. (19)

3. Numerical Analysis and Discussion

~“or numerical calculations, the fluid or elastic
medium is assumed to be water or aluminum,
res pectively. The longitudinal wave speed of

water is 1480 m/sec, and the longitudinal and
transversal wave speeds of aluminum are 6370
and 3070 m/sec, respectively. All numerical
calculations are performed for backscattering,
that is, ¢ = 7.

3.1 Rigid cylinder
Figure 2 compares magnitudes and phases of
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Fig. 2 Acoustic and elastic wave scattering from a
rigid cylinder: (a) PP n=0 (b) PP n=3
(c) PP n=3 zoomed plot
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partial waves of the elastic rigid PP case ( P
wave incidence and P wave scattering) with
the acoustic rigild case. These two cases are
comparable because we have only PP case for
the acoustic wave scattering. For #» =0 mode,
mode conversion does not occur for the elastic
wave scattering. Therefore, in Fig. 2(a) we
obtain identical magnitude and phase for both
cases. We note that the dips in the magnitude
between two neighboring smooth peaks reaches
zero and abrupt x -phase shifts occur at dip
frequencies. The amount of phase shifts through
the peaks are also « radians. For =1, while
acoustic wave scattering retains this behavior,
elastic wave scattering does not. As an example,
for n=3, Fig. 2(b) and (c) show that the
magnitudes never reach the zero even at the
dips. and the phase shifts at the dips as well as
through the smooth peaks are less than =«
radians. (In References 10 and 11, it is
mentioned that this non-zero (filled- in) dip is
due to mode conversion and radiation damping.
However, we note that radiation damping is not
contributing to this filled-in dip because acoustic
scattering does not show any filled-in dip.)
These phenomena are more apparent in the low
frequency region as shown in Fig. 2(b). As the
frequency becomes higher, at dip frequencies the
magnitudes approach zero value and the phase
shifts become close to x. Fig. 2(c) shows
clearly that the phase shift at a dip for elastic
wave scattering is not abrupt but gradual. These
phenomena are due to mode conversion. The
energy of incidence P wave is partially
converted .to that of S wave during elastic
wave scattering when »n=1. By introducing the
analogy of mechanical vibration system, PP
case acts like a system with damped oscillators,
in which the phase shift at a resonance is
gradual and less than « due to the energy
dissipation by damping and the overlapping of
neighboring resonances. The amount of mode
converted energy is larger in the low frequency
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region and becomes smaller as the {frequency
increases, as shown in PS case (P wave
incidence and S wave scattering) in Fig. 3. The
elastic PS case looks much simpler than PP
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Fig. 3 Elastic wave scattering from a rigid cylinder
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Fig. 4 Elastic wave scattering from a rigid cylinder
:(a) SS n=0and (b) SS =n=3
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Fig. 5 Form function of acoustic wave scattering
from a rigid cylinder

case. There is only one smooth peak in the
rmignitude which moves to the right as the
m>yde number n increases, and therefore no dip
exists, The phase goes down monotonously
w thout any abrupt shift as the frequency
in:reases. Due to the unitarity of the scattering

. (46)
matrix

. the PS and SP cases are identical
(except the different level of magnitude). Figure
4 presents the SS case. Similarly to the P
wive incidence <case, there is no mode
cenversion when »n = 0, Figure 4(a) shows that
fo- n=0 mode, dips reach zero in magnitude
ard m-phase shifts take place at the dip
f-2quencies and also through smooth peaks. (We
ncte that if Fig. 4(a) is plotted as a function of

% a rather than kA, it would be the identical

pht with Fig. 2(a).) Like the PP case, for
n 2 1, the dips do not reach down to zero value
ard the phase shifts are less than 7« radians
tecause of mode conversion, as shown in Fig,
4(b).

The form functions are obtained by summing
rertial waves as defined. Figs. 5 and 6 show the
form functions of the acoustic and elastic wave
scatterings, respectively. The magnitudes of the
farm  functions for non-mode conversion cases
( PP or SS) converges to the same value of

/Y2 for both acoustic and elastic wave
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Fig. 6 Form function of elastic wave scattering
from a rigid cylinder : (a) PP and (b) SS

scatterings. The phases are monotonously
decreasing without any abrupt or gradual phase
shift throughout all frequency range although
each partial wave includes phase shifts at the

dip frequencies.

3.2 Soft cylinder

Basically the same trends in the behaviors of
magnitudes and phases can be observed for both
the rigid and soft cylinder cases. Therefore, the
detailed discussion is not repeated for the soft
cylinder case.

Elastic soft PP #»n=0 mode in Fig. 7(a)
behaves differently from acoustic soft == 20
mode, especially, near zero frequency, while we
had identical plots for elastic rigid PP and
acoustic rigid for n =0 mode (Fig. 2(a)). Figure
7(b) shows the effect of mode conversion on the
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Fig. 7 Acoustic and elastic wave scattering ( PP)
from a soft cylinder: (a) #» =0 and (b) n =3

magnitude and phase, similarly to Fig. 2(b). A
parametric study was performed in Fig. 8, where
the shear wave velocity ¢, of the elastic

medium is arbitrarily decreased from 3070 m/s
to 0.1 m/s to simulate acoustic wave scattering.
As ¢, decreases, a larger peak is clearly shown

of which location is moving to the zero
frequency. For ¢,=01 m/s, it shows almost

same magnitude and phase with the acoustic =
=0 mode (Fig. 8(a)). However, more detailed
calculation reveals that there is still a very large
peak near zero frequency as can be seen in Fig,
8(b). This peak was mentioned as a giant

10
a0, Therefore, we can see

monopole elsewhere
that the giant

diminishing shear wave velocity ¢, due to the

monopole is caused by

loss of shear resistance in the medium. PS case
shown in Fig. 9 presents two smooth peaks (of
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Fig. 8 Elastic wave scattering ( PP) from a soft
cylinder with a varying ¢, @ (a) »n=0,
kya=0 - 25 and (b) =0, k,a =
0.000001 - 0.00002

which locations are moving to the high
frequency region and of which magnitudes
decrease as the mode number increases). The
phase monotonously goes down through the
second peak. A dip existing between these two
peaks reaches zero in magnitude and the abrupt
phase shift of & occurs at the dip frequency.
This dip moves to the right as the mode

number 7 increases'’.

This behavior of elastic
soft PS case looks different from PP case
(n2=1) and can be explained as such: There is
an energy loss in PP case, and consequently
PS case earns the energy which PP loses.
Therefore, elastic soft PS case is not
comparable to a damped oscillator, but rather a
negatively damped one. Figure 9 also shows that
the dip exists at the exactly same frequency for
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Fig. 11 Form function for acoustic wave scatiering
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Fig. 12 Form function for elastic wave scattering
from a soft cylinder : (a) PP and (b) SS

both PS and SP cases. As shown in Fig. 10, we
observe that for SS cases when #n =2, the first
dip from the left side
magnifude and the phase shift is close to #

is very close to zero

radians at that frequency. This is because the
mode converted energy is very small near this
first dip frequency as can be seen in Fig. 9.

The form functions can be obtained by
summing partial waves. Figs. 11 and 12 show
the form functions of acoustic and elastic wave
interesting to
(Fig. 11) and
elastic soft PP (Fig. 12(a)) cases look similar to
the elastic rigid SS (Fig. 6(b)) and acoustic
(Fig. 5)

function for elastic soft SS case in Fig. 12(b)

scatterings, respectively. It is

observe that the acoustic soft

rigid cases, respectively. The form

appears to be the most noteworthy shape. It is

due to the characteristics of interference
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between two shear waves from the reflection
from and diffraction around the soft cylinder.

4. Conclusions

Acoustic and elastic wave scatterings from an
acoustically rigid or soft cylinder were numeri-
cally analyzed. and the characteristics of phase
and magnitude of the scattered waves were
studied. The effect of mode conversion, which
occurs during elastic wave scattering, on the
magnitude and phase of partial waves of
scattered waves is identified. In case of non-
mode conversion in the acoustic or elastic wave
scattering, the dip between smooth peaks in
each partial wave reaches the zero magnitude
and abrupt - phase shift occurs at the dip
frequency. However, for mode conversion cases,
the dip never reaches zero magnitude, and the
phase shift becomes gradual and less than =«
radians. The phase of the form functions do not
show any abrupt phase change throughout all
frequency ranges for both acoustic and elastic
wave scatterings.
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