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ABSTRACT

This paper describes the performance of a full-authority neural network-based fault
tolerant system within a flight control system. This fault tolerant flight control system
integrates sensor and actuator failure detection, identification, and accommodation (SEDIA
and AFDIA). The first task is achieved by incorporating a main neural network (MNN)
and a set of n decentralized neural networks (DNNs) to create a system for achieving
fault tolerant capabilities for a system with n sensors assumed to be without physical
redundancy. The second scheme implements the same main neural network integrated with
three neural network controllers (NNCs). The function of NNCs is to regain equilibrium
and to compensate for the pitching, rolling, and yawing moments induced by the failure.
Particular emphasis is placed in this study toward achieving an efficient integration
between SFDIA and AFDIA without degradation of performance in terms of false alarm
rates and incorrect failure identification. The results of the simulation with different
actuator and sensor failures are presented and discussed.
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1. Introduction

The relatively low procurement of high
performance military aircraft along with the
cancellation of plans for building new aircraft
has renewed interest in fault tolerant {flight
control systems with capabilities for accommo-
dating sensor and actuator failures. For military
purposes it is evident that such a feature can
increase the chances of survivability following a
control surface failure in a combat scenario. In
fact, studies on the casualties by the US Air
Force during the Vietnam war have revealed
that up to 70 % of aircraft losses could have
been avoided if reconfigurable flight control
schemes were properly implemented in the flight
control systems. For scientific applications, much
emphasis has been placed on the design of fault
tolerant flight control systems for low weight
and unmanned aerial vehicles (UAVs) used for
remote sensing purposes. In general, a full fault
tolerant flight control system needs to perform:

(1) Sensor failure detection, identification, and
accommodation (SFDIA)"™*:

(2) Actuator failure detection. identification,
and accommodation (AFDIA)®™Y:

Furthermore, the SFDIA task can be divided
into:

- sensor failure detection, identification (SFDI),
which monitors the degree of deterioration in the
accuracy of the sensors.

- sensor failure accommodation (SFA), which
replaces the faulty sensor with an appropriate
estimation.

Similarly, the AFDIA task can be divided into:

- actuator failure detection and identification
(AFDI), which detects significant abnormalities
and searches for the cause or for a set of
probable causes:

- actuator failure accommodation (AFA), which
determines on-line what actions should be taken
to recover the impaired aircraft.

Sensor failure detection and identification
(SFDI) has been considered as an important
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issue, particularly when the measurements from
a failed sensor are used in the feedback loop of
a control law. Since the aircraft control laws
use sensor feedback to establish the current
dynamic state of the airplane, even slight sensor
inaccuracies, if left undetected and unaccommo-
dated for, can lead to closed-loop instability, at
its worst leading to unrecoverable flight conditions.

For SFA purposes, most of today's high
performance military aircraft as well as
commercial jetliners implement a triple physical
redundancy in their sensor capabilities. However.
when reduced complexity, lower costs, and
weight optimization are important factors in
aircraft design, an analytical sensor redundancy
approach is more appealing.

In terms of the AFDIA problem, an actuator
failure may imply a locked surface, a missing
part of the control surface, or a combination of
both. Generally, an actuator failure may change
trim conditions and induce a dynamic coupling
due to the corruption of dynamic stability, which
possibly leads to unrecoverable flight conditions.
The objective of the AFDIA, if properly and
successfully implemented, is to regain and
maintain acceptable stability, trim conditions, and
handling qualities following of an actuator
failure. Therefore, the pilot can lower mission
abort rates and even aircraft loss rates.

Theoretical FDI techniques, such as Genera-
lized Likellhood Ratio and Multiple-Model
Kalman Filtering, perform a continuous monitoring
of the measurements from the sensors™'?. At
nominal conditions, these measurements follow
known patterns with uncertainties due to system
and measurement noises. However, when sensor
or actuator failures occur, the measurements
deviate from the expected values computed
on-line or off-line from state estimation schemes.
The main problems associated with the application
of these f{failure detection schemes are their
suitability only for linear time invariant systems
and their applicability only when the system
model is identical to the filter or observer model
and/or with high signal-to-noise ratio. As an
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atarnative approach, the implementation of
Neural Networks (NNs) to the SFDIA and
ATDIA problems has been proposed and
de seloped in recent years'" "

The previous decade has witnessed an increase
ir NN research, mostly induced by the
introduction of the Back-Propagation Algorithm
(BPA) for feed-forward NNs with supervised
3~19 " 1n recent years NNs have been

proposed for identification and control of linear
(16~18)

learning

an1 non-linear dynamic systems
An aircraft system in certain phases of its
flght envelope can be considered a time-
va-ying, non-linear system with system and
measurement noises. Therefore, the control of
suwch a system can be attempted with an
adaptive  scheme. For NN applicability to
ad.aptive control systems, the following properties
are importantm'm‘”'lg)i
NNs can be
trained using past recorded or simulated data
(0:f-line training) or current data (on-line
learning).
- Applicability to non-linear systems : The

applicability of NNs to non-linear systems

- Learning and adaptation

originates from their demonstrated mapping
capabilities.

- Application to multivariable systems : NNs
are multi-input, multi-output (MIMO) entities
arul this, naturally, leads to their application to
mltivariable systems,

- Parallel distributed processing and hardware
imnlementation : NNs have an inherent parallel
architecture which, naturally, leads to high speed
perallel hardware implementations,

1. is clear that these properties of NNs are
very appealing for the purpose of providing fault
tclerance capabilities in a flight control system
fcllowing sensor and/or actuator failures. A
critical design choice in the use of NNs for both
est mation and control purpose is on-line learning
vs. off-line learning. Off-line learning implies that
the NNs have a frozen numerical architecture
anc. do not take advantage of the additional
leaxning which can be provided by on-line data.

With on-line learning neural networks two issues
are of concern. These are the necessary amount
of time required to achieve an acceptable
learning level and the level of complexity of the
NN architecture. Both these problems are
related to the learning algorithm. Therefore, the
performance and the acceptability of an on-line
learning NNs depend on the performance of its
training algorithm.

To date, the Standard Back-Propagation
algorithm (SBPA), a gradient-based optimization
method, has been widely used as a training
algorithm for the NN architecture. However,
there are some drawbacks associated with the
SBPA in terms of learning speed and local

15 These problems may be solved by

minimums
introducing a heterogeneous network, meaning
that each neuron in the hidden and output layer
of the NN has the capability of updating the
output range (upper and lower bounds U, L)
and the slope of the sigmoid activation function

(T) as given by

U-Li,
ACNENEY ’Ti.j)=’-_x,,,/““*1ﬂ'.j
e T (1)

where ¢, j are the indices for the generic neuron
of the hidden and output layers and x is the
same argument as in the SBPA sigmoid
activation function. This learning algorithm has
been named the Extended Back-Propagation

algorithm (EBPA) and has demonstrated
substantial performance improvements with
respect to the SBPA in terms of accuracy” and

learning speed(zm.

An important objective of this effort is to
address the issues of the integration between the
SFDIA and AFDIA schemes. Although both
SFDIA and AFDIA problems have been
extensively addressed and described in the
technical literature in recent years, it was
difficult to find a single reference describing the
integration of the two schemes within flight
control systems. This is mainly due to the fact
that fault tolerance following actuator failure is a
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more important problem within the flight control
community since physical redundancy in the
sensory capabilities is typically available within
flight control systems of both civil and military
aircraft. However, as In the case of high altitude
UAV performing scientific or military missions,
an analytical sensor redundancy is preferred due
to the reasons that the addition of physical
redundant sensors may substantially increase the
weight, the cost, and the complexity of the
aircraft. Because of these facts, a reliable
software-based integration between SFDIA and
AFDIA schemes is a favorable approach to
provide comprehensive sensor and/or actuator
failure detection, identification, and accommodation
capabilities against all probable sensor and/or
actuator failure types.

The paper is organized as follows: the next
sections review the SFDIA and AFDIA schemes
followed by a section describing the results of
the simulations for sensor and actuator failures.
The final section summarizes the paper and
provides some conclusions.

2. Neural Network-Based Sensor Failure Detection,
Identification, and Accommodation

Using on-line learning NN estimators, the
SEFDIA approached by
introducing multiple feed-forward NNs trained
on-line with the EBPA. Particularly, the scheme
consists of a main NN (MNN) and a set of =
decentralized NNs (DNNs), where #n is the
number of the sensors in the flight control

problem can be

system  without physical redundancy. The
outputs of the MNN are the estimates of the
same parameters measured by the n sensors at
time ‘k’, using measurements from time instant
k-1" to k-I'; these estimates are compared with
the actual measurements at time k'. For the
i-th of the =n DNNs, the output is the
estimate of the measurement of the 7-th sensor,
that is, the prediction of the state at time 'k,
using measurements from ‘k-1" to ’k-!" to be
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compared with the actual measurement at tims:
‘k. The inputs to the 7-th DNN are ths
measurements from any number to up 'n—1"
sensors, in other words, all the =»n sensors
excluding the 7-th one.

For SFD purposes, when a quadratic estimation
error parameter from the MNN exceeds some
predefined threshold at a certain time instant,
the scheme deduces that a sensor failure may be
occurring or has already occurred. Following the
positive sensor failure detection, the learning for
each DNN is  halted: then, a Qquadratic
estimation error parameter from the DNNs
exceeding, at the same time instant, another
threshold provides the identification. For the
accommodation phase, the i-th DNN output is
used to replace the measurement from the faulty
sensor. ¢-th DNN output is also used as input
to the MNN for the purpose of allowing the
MNN to provide detection capabilities until the
end of the flight. This output is also passed to
all other DNNs using the ¢-th sensor as an
input parameter. This double trigger’ approach
using both MNN and DNNs has the purpose of
reducing the rafe of false alarms in the FDI
process. Several options can be added to this
scheme to add robustness for noisy measurements
and/or intermittent sensor failures. For example,
a lower and a higher threshold level can be
introduced for the DNNs, If the estimation error
for the i-th DNN exceeds the lower threshold
once, the status of the corresponding i-th sensor
is declared suspect and the numerical architecture
of the 7-th DNN is not updated. Should this
status continue for a certain number of fime
instants and/or the estimation error in successive
time instants exceeds the higher threshold, then
the sensor is declared failed and is, therefore.
replaced by the output from the 7-th DNN.

The following quadratic parameters are used
for sensor failure detection (SFD) purposes :

1 Num.of DNNs

MQEE(k) = > >

i=}

(X (k-0 pquy (K)*
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1 [(P(k)—ﬁmviv(k)f*’(‘ﬂk) ]
2

~ Gravw (KDY +(r(K) = Py (K))? (2)

ar
Num. of DNNs

OQEE(k) =% >

i=1

(O yw (5)-0; pyw (k)*

1 {(ﬁmn(k)—ﬁpw(k))z +(ém~(k)}
2| 4o (0)) H s (K>~Fomn (1))* | (3)

were p,owv. @, pny and 7, pyw are the estimates

cf p, g and r» from the respective DNNs. For
s.:nplicity purposes, let us consider failures only
fo- the pitch rate, the roll rate, and the yaw
In general, MQEE provides better
performance for step-type sensor
wereas OQEE performs better for ramp-type of
se1sor failures'”.

The sensor failure identification (SFI) can

rae gyros.
failures

Inistead be achieved by monitoring the absolute
velue of the estimation error of each DNN,
defined as

DQEEX(k)=%(x(k)—£(k))Z
where x=p,q and 7» (4)

Fcr sensor failure accommodation (SFA) purposes,
th: following classic parameters for the estimation
e- or are instead evaluated:

1 N
DAEE =— k)-x(k
EPICORC) )

N
DVEE, =-}]\7Z [(x(k)-%(k))~-DAEE, }*

k=1

where x=p,¢ and 7 (6)

where DAEE and DVEE represent the DNN
es imation error mean and variance respectively.
Tie ‘N’ refers to the number of time steps from
ta: instant when failure of sensor is declared to
ta: end of the simulation.

3. Neural Network-Based Actuator Failure
Detection, ldentification, and Accommodation

‘The occurrence of any actuator {failure also

implies that the parameter MQEE' defined
above exceeds a selected threshold. Thus, the
(AFD) «can be
achieved by spotting substantial changes in the

actuator failure detection

aircraft angular velocities following any type of
actuator failure. Next, the actuator fajlure
identification (AFI) can be performed by
analyzing specific cross-correlation functions. In
general, for two random processes Y (k) and

X (k). a cross-correlation function is defined by :
Ry (m=E[Y (k)X (k + m)] (7

For AFI purposes the cross-correlation functions
Ry, Ry, and R, are used, taking advantage of

the fact that any type of actuator failure on any
aircraft control surface involves a loss of
symmetry. This loss is then followed by a
dynamic coupling between longitudinal and
lateral-directional aircraft dynamics. Furthermore,
the auto-correlation function, R, has shown

capabilities as a useful identification tool in the
event of a rudder actuator failure.

Following a positive AFD and AFI, the
immediate objective is to regain equilibrium and
to compensate for the pitching, rolling, and
yawing moments induced by the failure.
Toward this goal. three separate NN controllers
are introduced: ie., a NN pitch, a NN roll, and
a NN yaw controller.

The output of the NN pitch controller is the
deflection for the
healthy elevator (elevator failure case) or the

compensating remaining
symmetric elevators (aileron and/or rudder
failure case). The on-line learning for the NN
pitch controller is initiated as the simulation
starts, Under nominal conditions, the controller is
trained to emulate the actual control deflections
for the symmetric -elevators. Therefore it
minimizes the cost function :

Jp"c"nom =(6HL.R —$HL.R ) ( 8 )

Following a positive AFD and AFI showing
the need for a longitudinal AFA, the on-line
learning NN pitch controller switches its target
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to minimize the cost function:
quch‘H = kl (q - qref )+k2 (6 - grcf )+k3 (q_qwf) (9)

where 9rs =0 Orey=irim» and gy = 0.

It should be noted that this cost function
resembles a controller with a PID error formu-
lation. Also, it should be mentioned that the
on-line learning at nominal conditions (that is
with the AFDIA process not activated) has no
physical meaning: in fact, the NN pitch
controller is just “emulating” control deflections
at nominal conditions. However, this procedure
has shown the benefit of improving the transient
response by having the NN output within the
same order of magnitude of the NN output
necessary when the AFA process is turned on
following a positive AFD and AFL

The NN roll and yaw controllers operate in a
similar fashion. Under nominal conditions, these
controllers learn to replicate the actual control

—— |

Flight Control System
Sensors Data

: Update
: r (i, R_ (), R (K),
} | MNN - ™

( SFD and AFD} l
Estimates of 'p’,
QT at time 'k’ Updats

Sum|R_| Sum[R

Eir

Set 'k=k+1'

) R R R
Nogaiiee threshoid analysis
Sensor Failure p,.L.
N-m 1 dentification through L
xDNN Estor
Set'keks 1’ T Actustor Faiture kdentification
Ponkin through IR, R, R, IR}
; 1
Sensor Fallure
Send x-ONN estimate o fiight Actustor Failure Accommodation
computar in place of x-sensor PHeh HNC - Rol NNC - Yaw NNC

Fig. 1 Block diagram of the AFDIA scheme integ-
rating with SFDIA
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deflections for the ailerons and the rudder by
minimizing the cost functions:

J ot =(0 4, —3,4“? ) (10
Jyawm=(5R—$R) (11}

Following positive AFD and AFI, the on-line
learning NN roll and yaw controllers switch their
targets to minimize the cost functions:

I rott y, = Ka(P = Prog y+ks (& = &rey) (12)

Iy sy = F6 (T = Trey) (13)

where the Prsr =%rr =%%r =0 at trim conditions.
Figure 1 shows a block diagram of the
AFDIA process integrating with SFDIA.

4, Analysis of the Integration between the
SFDIA and the AFDIA Schemes

As stated in the previous section, the SFDIA
scheme is simulated only for {failures of the
pitch, roll, and yaw rate gyros. Therefore, the
NN-based SFDIA scheme uses one main NN
(MNN) with three decentralized NNs (DNNs).
The architectures for the MNN and the ¢-DNN
are shown in Table 1. Note that input parameters
of ¢-DNN do not include pitch rate measure-
ments to have reliable estimates. Similarly, the
p-DNN and the 7-DNN do not use ‘p° and
‘Y as input parameters, respectively. The
AFDIA scheme is simulated for failures of the
actuators of elevators, ailerons, and rudder.
Therefore, the AFDIA scheme consists of three
NN controllers and shares the MNN with the
SFDIA as also shown in Table 2.

To ensure robustness in the performance, the
SFDIA scheme requires a betfer understanding
of the typical nature of sensor failures. Angular
rate gyro accuracy Iis characterized by two
parameters: drift and scale factor. Gyro drift
characterizes the ability of the gyro fo reference
all rate measurements to the nominal zero points.
It appears as an additive term on the gyro
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output, so sensor failure can be modeled as,
xfa:lure, i=xnom,i+pni (14)

~vhere =n; is the direction vector for the i7-th
‘aulty sensor, and p is the magnitude of the
‘allure which can be positive or negative. The
scale factor describes the capability of the gyro
.0 accurately sense angular velocity at different
angular rates. System imperfections can cause
variations in the scale factor which appear as a
‘actor at the output of the gyro. Therefore,
sensor failure can be modeled as,

X Jatture, i =(1 '0+kni )xnom,i ( 15 )

~vhere k is a amplitude for the 7-th faulty
sensor.
According to the direction vector, n; sensor
‘ailure can be modeled as:

- for step-type sensor failures, n;=1:

- for ramp-type sensor failures,

-1,

— (L SE<1yy)
f2 N

n=1 (t215)

wvhere tjand t, indicate the initial and final

ime instant of ramp-type sensor failure, respec-
dvely., The different types of sensor failures
sonsidered in this study based on the above
‘ormula are represented by :

T'ype#1&2 : Large/small sudden bias:

Type#3&4 ' Large/small drifting bias with fast
transient period ( <1 sec):

Type #5&6
slow transient period ( <5 sec):

Large/small drifting bias with

The maximum control surface deflections in
‘he simulation code are * 15 degrees for the
slevators and * 20 degrees for the ailerons and
‘he rudder. The code also models the actuation
ate for each of the control surfaces with a
naximum deflection rate of * 20 deg/sec. The
actuator failures are assumed to occur randomly
luring high speed cruise conditions. The
onsidered actuator failures are given by :

Case #1&2 Stuck R/L elevator at trimmed/
untrimmed deflections with/without missing
surface:

Case #3&4 Stuck R/L aileron at trimmed/

untrimmed deflections with/without missing
surface.

Case#5&6 : Stuck rudder at
untrimmed deflection with/without missing

trimmed/

surface:

It is important to note that the mathematical
modeling of the-actuator failures in the event of
a missing part of the control surface is derived
through a set of closed form expressions for the
non-dimensional stability and control derivatives.
These expressions are functions of the normal
force coefficient of the control surface whose

Table 1 Neural network architecture for SFDIA

MNN qg— DNN

Input parameter Lunv | 1,— pvw
Data Pattern 5 5
Total number of input 40 20
Number of HLs 1 1
Number of HL neurons 25 20
Outputs b a7 q
Learning rates 0.01 0.01
Momentum coefficients 0.005 0.005
Parameters to be updated 1187 504
Iyw=0,4a,7, ¢, 0, 0p, 04, O

I =@, @y, Gy W

Table 2 Neural network architecture for AFDIA

g— NNC| »r— NNC

Input parameters Iooave | 1o-mne
Data Pattern 2 3
Total number of inputs 6 15
Number of HLs 1 1
Number of HIL. neurons 20 20
Outputs BE(L, R) /SR
Learning rates 0.2 0.5
Momentum coefficients 0.1 0.3
Parameters to be updated 224 404
I,_wc=24q, 0, o

I_xyc=7, 0,8, 6, 0,
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actuator is assumed to have failed ™.

As described in previous sections, the SFDIA
and the AFDIA schemes share the same
detection mechanism. Once the detection-alert is
triggered, then the critical task is to decide
among the occurrence of a sensor failure, an
actuator failure, and a false alarm. For this
purpose a key role is played by the trends
shown by the on-line calculated and stored auto
correlation( R,,) and cross correlation functions

( Ry, R, , Ry). Only when any of these functions

exceeds a threshold an actuator failure declared,
in lieu of a false alarm or a sensor failure. This
is true even if at the same time any of the
quadratic estimation errors from the DNNs is
exceeding its thresholds.

The mathematical model used for this study is
the model of a B747-200 aircraft. Using
aerodynamic and thrust datam), a simulation
code was developed. This model features
non-linear dynamics, linearized aerodynamics and
it includes system and measurement noise'®.
The system noise is modeled as zero mean,
white, Gaussian gust disturbance on the angle of
attack and on the sideslip angle. The sensor
noise is also assumed to be Gaussian and white,
The primary control surfaces consist of two
differential elevators, two differential ailerons,
and rudder.

The numerical simulation starts at typical
cruise conditions, defined by an altitude of
40,000 ft and at an airspeed of 871 ft/sec. An
on-line learning process is simulated following
30,000 sec. of off-line training. For the purpose
of showing the complicated SFDIA-AFDIA
integration scheme, a sequence of different
failures is introduced within a 150 sec.
simulation:

Failure #1: an actuator failure on the right
elevator with a stuck surface at +10 deg.
leading to a 25% reduction in aerodynamic
effectiveness. Failure occurrence: ¢ =30 sec.

Failure #2: a pitch rate gyro failure involving

additive large drifting bias ( { 5 deg/sec : 25
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deg/sec) with slow transient period ( < 5 sec :
2 sec). Failure occurrence: ¢ =60 sec.

Failure #3: an actuator failure on the rudder
with a stuck surface at +7 deg. with a 25%
reduction in aerodynamic effectiveness. Failure
occurrence: ¢ =100 sec.

Fig. 2(a) shows the trend of the MQEE
parameter around the occurrence of failure #1.
Although failure #1 is an actuator failure, it
could be interpreted as a sensor failure from the
Fig. 2(b). However, the suspected sensor failure
is overruled by the trend of the cross correlation
functions. In other words, a comparison of the
magnitudes of the sums of the absoclute values
of the cross correlation Ry, K, and R, allows
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=§ st 1
i .
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0 .
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s T T T
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Fig. 2 Plots of AFDIA phase following right elevator
failure
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the identification of the failure as an “elevator
actuator failure”, as shown in Fig. 2(c). It
skould be noted that the decreasing trend in
Fig. 2(¢c) is due to the successful AFA,
fylowing the positive AFDI, provided by the
ccmbined actions of the on-line learning pitch,
rol, and yaw neural controllers., Fig. 2(d) shows
tae time history of the pitch rate, which
cenfirms that the fault folerance schemes can
rz3ain equilibrium of the aircraft following the
elevator actuator failure.
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F g. 3 Plots of SFDIA phase following pitch rate
gyro failure

Fig. 3(a) shows that the "OQEE” parameter
exceeds the predefined threshold during the
observation period. It triggers a “state-of-alert”
for both actuators and sensors. However, since
failure #2 is a sensor failure, this time a
substantial longitudinal-lateral dynamic coupling,
R,,, has not occurred, as revealed in Fig. 3(b).
Furthermore, the clear trend of the ¢-DNN
error shown in Fig. 3(c) identifies the failure
It should be
noted that from the instant ¢-DNN error
exceeds threshold #1 the on-line learning for
the ¢-DNN is halted: furthermore, from the
instant g-DNN error exceeds threshold #2, the
g-DNN error becomes meaningless since the

#2 as a "pitch rate gyro failure”,

output of the ¢-DNN replaces the reading from
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Fig. 4 Plots of AFDIA phase following rudder failure
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the pitch rate gyro. Fig. 3(d) shows a successful
SFA following by a positive SFDI Thus, the
time history of ¢-DNN is in good agreement
with the nominal value for pitch rate gyro.
Failure #3, the last failure in the simulation,
is a rudder actuator failure, Once again, the
"MQEE" parameter exceeds its threshold
triggering detection failure for both actuator and
sensor in Fig. 4(a). Once again the 7r-DNN
error exceeds the lower threshold, as shown in
Fig. 4(b): this halts the on-line learning for the
r-DNN. However, the suspected ‘sensor failure’
is overruled by the trend of the sum of the
absolute values of the coefficients of the auto
correlation function R,, which exceeds its

threshold, as shown in Fig. 4(c). Therefore a
‘rudder actuator failure’ is declared. As in Fig.
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2(c), a decreasing trend can be noticed in Fig,
4(c) due to the successful AFA achieved by the
on-line learning roll controller.

The overall effectiveness of the AFA scheme
for both elevator and rudder failures is more
clear from the trends in Fig. 5(a) through 5(c).
which show the deflections of the left and r:ght
elevators, left and right ailerons, and rudder. As
stated above, the primary goal following an
actuator failure is to regain a trimmed equilibrium
condition for the aircraft. For that purpose,
following failure #1 the left elevator provides
the necessary pitching deflection as calculated
by the on-line learning pitch neural controller, as
shown in Fig. 5(a). Fig. 5(b) shows instead the
compensating aileron deflections canceling the
rolling moment induced as a cross-effect by the
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Fig. 6 Plots of accommodation phases following
sensor and actuator failures
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right elevator failure: also shown after ¢ =100
sec. is the aileron deflection canceling the
yewing moment induced as a cross-effect by
tte rudder failure.

Figure 6(a) through 6(c) show the time
histories of key aircraft parameters, which is the
c'namic scenario of the simulation. That is, the
pixch angle( @), roll rate( p), and yaw rate( »),
respectively. Again, these time histories verified
trat the fault tolerant schemes were able to
regain equilibrium of the aircraft following the
cifferent failures.

5. Conclusions

This paper has presented a neural network-
based fault tolerant flight control system with
cz.pabilities for detecting, identifying, and
accommodating sensor and actuator failures. A
perticular logic is introduced allowing the
integration of the two schemes with the goal of
rinimizing the false alarm rate as well as
incorrect failure identification. The results
cenfirm the potential offered by on-line learning
NNs for both state estimation and control
purposes within fault tolerant systems. A further
stady for the assessment of reliability of this
integration technique is required.
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