EXTREMAL STRUCTURE OF \(B(X^*) \)

JOUNG NAM LEE

ABSTRACT. In this note we consider some basic facts concerning abstract \(M \) spaces and investigate extremal structure of the unit ball of bounded linear functionals on \(\sigma \)-complete abstract \(M \) spaces.

1. Introduction

The original definition of an abstract \(L_1 \) or \(M \) space is given by S. Kakutani. The representation theorems of Kakutani are followed by several results which give joint characterizations of the abstract \(L_p \) spaces and \(M \) spaces among general Banach lattices.

A Banach lattice \(X(\text{BL}, \text{for short}) \) for which \(\|x + y\| = \max(\|x\|, \|y\|) \), whenever \(x, y \in X \) and \(x \wedge y = 0 \), is called an abstract \(M \) space. Let \(1 \leq p < \infty \). A \(BL X \) for which \(\|x + y\|^p = \|x\|^p + \|y\|^p \), whenever \(x, y \in X \) and \(x \wedge y = 0 \), is called an abstract \(L_p \) space. It is obvious that every \(L_p(\mu) \) space is an abstract \(L_p \) space if \(p < \infty \) or an abstract \(M \) space if \(p = \infty \). The converse is also true if \(p < \infty \).

If \(\{x_\alpha\}_{\alpha \in A} \) is a set in a \(BL \), we denote by \(\bigvee_{\alpha \in A} x_\alpha \) or by \(\sup_{\alpha \in A} \{x_\alpha\}_{\alpha \in A} \) the (unique) element \(x \in X \) which has the following properties: (1) \(x \geq x_\alpha \) for all \(\alpha \in A \) and (2) whenever \(z \in X \) satisfies \(z \geq x_\alpha \) for all \(\alpha \in A \) then \(z \geq x \). Unless the set \(A \) is finite, \(\bigvee_{\alpha \in A} x_\alpha \) need not always exist in a \(BL [5] \).

For an element \(x \) in a \(BL X \) we put \(x^+ = x \vee 0 \) and \(x^- = -(x \wedge 0) = (-x) \vee 0 \). Obviously, \(x = x^+ - x^- \) and \(|x| = x^+ + x^- \). Especially, if \(x = u - v \), \(u \geq 0 \), \(v \geq 0 \) in \(X \), then \(u = x^+ + u \wedge v \) and \(v = x^- + u \wedge v \). Also, if \(u \wedge v = 0 \), then \(u = x^+ \) and \(v = x^- \) [6].

Received by the editors March 10, 1998 and, in revised form Oct. 7, 1998.
1991 Mathematics Subject Classifications. Primary 46B42.
Key words and phrases. Banach lattice, \(M \) spaces, extreme point.
This paper was supported by the research fund of Seoul National University of Technology.
The dual X^* of a BL X is also a BL provided that its positive cone is defined by $x^* \geq 0$ in X^* if and only if $x^*(x) \geq 0$, for every $x \geq 0$ in X. For any $x^*, y^* \in X^*$ and every $x \geq 0$ in X, we have

$$(x^* \lor y^*)(x) = \sup \{x^*(u) + y^*(x - u); 0 \leq u \leq x\}$$

and

$$(x^* \land y^*)(x) = \inf \{x^*(u) + y^*(x - u); 0 \leq u \leq x\}.$$

For a BL X, if X is an abstract M space, then X^* is an abstract L space and if X is an abstract L space, then X^* is an abstract M space, respectively. Also, if X is a BL, then X^* is a space of regular functionals [3]. Obviously, for a BL X and $x^* \in X^*$, $x^*(x) = \sup \{|x^*(y)| : |y| \leq x\}$ [4].

A BL X is said to be σ-complete if every order bounded set(sequence) in X has a sup, and a BL X is said to be bounded σ-complete, provided that any norm bounded and order monotone sequence in X is order convergent. Obviously, bounded σ-complete BL is σ-complete, but the inverse does not hold [5].

Since every $x^* \in X^*$ can be decomposed as a difference of two non-negative elements, it follows that every norm bounded monotone sequence $\{x_n\}_{n=1}^{\infty}$ in X is weak Cauchy. If, in addition, $x_n \rightharpoonup x$ for some $x \in X$ then $\|x_n - x\| \to 0$ as $n \to \infty$. This is a consequence of the fact that weak convergence to x implies the existence of convex combinations of the x_n's which tend strongly to x.

For a Banach space X, we always denote by $B(X)$ and $S(X)$ the unit ball and the unit sphere of X respectively. $x \in S(X)$ is called an extreme point of $B(X)$ if for any given $y, z \in B(X)$ and $x = \lambda y + (1 - \lambda)z$ for some $0 < \lambda < 1$, then $x = y = z$. The set of all extreme points of $B(X)$ is denoted by $\partial B(X)$. In this note we will investigate the extreme points of the unit ball of a dual space.

Now we show some propositions which will be needed in the sequel.

2. Main theorem

A BL X is an abstract L_p space if and only if for any $x, y \in X, x, y \geq 0$ implies $\|x + y\| = \|x\| + \|y\|$. Moreover, $\|u\| = \|x^+\| + \|u \land v\|$, $\|v\| = \|x^-\| + \|u \land v\|$, where $x, u, v \in X, x = u - v$ and $u \geq 0, v \geq 0$ [6]. Hence, we have the following result.
Lemma 1. Let a BL X be an abstract L_p space and $x \in X$. Then $x = x^+ - x^-$ is unique in the sense that if $x = u - v, u \geq 0, v \geq 0$ and $\|u\| + \|v\| = \|x\|$, then $u = x^+$ and $v = x^-$.

Proposition 2. If a BL X is bounded σ-complete and $B(X)$ is order closed, then there exists $x \in S(X)$ such that $x^*(x) = \|x^*\|$ for every $x^*(\geq 0) \in X^*$, that is, x^* is norm attainable.

Proof. Let x_n be a positive element in $S(X)$ such that $x^*(x_n) \to \|x^*\|$. Since X is bounded σ-complete and $B(X)$ is order closed, $y = \bigvee_{n} x_n$ exists in X and $\|y\| = 1$. Hence, $y \geq x_n \geq 0$ and $x^* \geq 0$ implies $\|x^*\| \geq x^*(y) \geq x^*(x_n) \to \|x^*\|$.

Note that the conclusion of Proposition 2 may not be true if an abstract M space X is not bounded σ-complete. For instance, let $X = c_0$ and $x^* = (c_n) \in l_1$ with infinitely $c_n \neq 0$. Then there does not exist $x \in S(X)$ such that $x^*(x) = \|x^*\|$.

If a BL X is bounded σ-complete and $B(X)$ is not order closed, then the conclusion of Proposition 2 is not true in general.

For a subset Y of a BL X, we define

$$Y^\perp = \{x \in X : |x| \wedge |y| = 0 \text{ whenever } y \in Y\}, \quad x^\perp = \{x\}^\perp.$$

If $x \in X = Y + Y^\perp$, then x can be uniquely decomposed into $x = y + z$, where $y \in Y$ and $z \in Y^\perp$. In this case, we write $x|_Y = y$ and $x^*|_Y(x) = x^*(y)$ for $x^* \in X^*$.

Proposition 3. If an abstract M space X is σ-complete and $x^* \in X^*$, then for any $\varepsilon > 0$, there exists a subspace Y of X such that $X = Y + Y^\perp$ and $\|x^*|_Y\| < \varepsilon$, $\|x^*|_Y\| < \varepsilon$.

Proof. Let x be in $S(X)$ such that $x^*(x) > \|x^*\| - \varepsilon$, and put $Y = (x^-)^\perp$. Then $x^+ \in Y, x^- \in Y^\perp$, and by [5] $X = Y + Y^\perp$. Moreover, by properties of an abstract M space X^*,

$$\|x^*|_Y\| + \|x^*|_Y\| + \|x^*|_Y\| + \|x^*|_Y\| = \|x^*\| < x^*(x) + \varepsilon$$

$$= x^+|_Y(x) + x^+|_Y(x) - x^-|_Y(x) - x^-|_Y(x) + \varepsilon.$$
Since $x^+|_{Y^\perp}(x) \leq 0$ and $x^-|_{Y}(x) \geq 0$ it follows that

\[
\|x^+|_{Y^\perp}\| + \|x^-|_{Y}\|
\]

\[
= \|x^+\| - \|x^+|_{Y}\| + \|x^-\| - \|x^-|_{Y^\perp}\|
\]

\[
\leq \|x^+\| - x^+|_{Y}(x) + \|x^-\| - x^-|_{Y^\perp}(x)
\]

\[
< x^+|_{Y^\perp}(x) - x^-|_{Y}(x) + \varepsilon \leq \varepsilon.
\]

Lemma 4. Let an abstract M space X be bounded σ-complete and $B(X)$ order closed. Then $x^* \in X^*$ is norm attainable if and only if there exists a subspace Y of X satisfying $x^+ = x^*|_{Y}$, $x^- = -x^*|_{Y^\perp}$.

Proof. Suppose that $x^* \in X^*$ is norm attainable. Then, by Proposition 2, there exist $x, y(\geq 0) \in S(X)$ such that $x^+|_{Y} = \|x^+\|$ and $x^-|_{Y}(y) = \|x^-\|$. Since $x^+ = x^*|_{Y}$ and $x^- = -x^*|_{Y^\perp}$, we may assume $x \in Y$ and $y \in Y^\perp$ (otherwise we replace x, y by $x|_{Y}$, $y|_{Y^\perp}$ respectively). Now, we put $u = x - y$. Then $\|u\| = \|x - y\| = \max\\{\|x\|, \|y\|\} = 1$ and thus, by properties of an abstract M space X^*, we get that

\[
\|x^*\| = \|x^+\| + \|x^-\| = x^+|_{Y}(x) + x^-|_{Y^\perp}(y)
\]

\[
= x^*|_{Y}(x) + x^*|_{Y^\perp}(-y) = x^*(u).
\]

Conversely, choose $x \in S(X)$ such that $x^*(x) = \|x^*\|$, and define $Y = (x^-)^\perp$. Then $X = Y + Y^\perp$ and $x^+ \in Y$, $x^- \in Y^\perp$. Observe that $\|x^*\| = \|x^*|_{Y}\| + \|x^*|_{Y^\perp}\|$; to prove $x^+ = x^*|_{Y}$ and $x^- = -x^*|_{Y^\perp}$, it suffices to show $x^*|_{Y} \geq 0$ and $-x^*|_{Y^\perp} \geq 0$ thanks to Lemma 1. Indeed, if $x^*|_{Y}(y) < 0$ for some $y(\geq 0) \in S(X)$, then we may assume $y \in Y$. Therefore, $z = -x^- - y$ satisfies $\|z\| = \max\\{\|x^-\|, \|y\|\} = 1$ and thus,

\[
\|x^-\| \geq x^-|_{Y^\perp}(-z) = x^*(z) - x^+|_{Y}(z) \geq x^*(z)
\]

\[
= x^*|_{Y^\perp}(-x^-) - x^*|_{Y}(y) > x^*|_{Y^\perp}(-x^-) = -x^*|_{Y^\perp}(x).
\]

Since $\|x^+\| \geq x^*(x|_{Y}) = x^*|_{Y}(x)$, this clearly leads to a contradiction that

\[
\|x^*\| = \|x^+\| + \|x^-\| > x^*|_{Y}(x) - x^*|_{Y^\perp}(x) = x^*(x) = \|x^*\|.
\]

A similar argument would show that $-x^*|_{Y^\perp} \geq 0$.

Now we investigate the extreme points of the unit ball of a dual space. The sequence $\{x_n\}$ converges weakly to zero in a Banach space X if and only if $\{x_n\}$ is bounded, and $x^*(x_n) \to 0$ for every $x^* \in \partial B(X^*)$.
Theorem 5. Let an abstract M space X be σ-complete and $x^* \in S(X^*)$. Then $x^* \in \partial B(X^*)$ if and only if $x^*(x)x^*(y) = 0$ for all $x, y \in X$ such that $x \wedge y = 0$.

Proof. Sufficiency. First we show $\|x^*^+\|\|x^*-\| = 0$. In fact, by Proposition 3, for any $\varepsilon > 0$, there exist orthogonal subspaces Y, Z, of X such that $X = Y + Z$ and $\|x^*\|_Y < \varepsilon$, $\|x^*\|_Z < \varepsilon$. Choose $x \in S(X)$ satisfying $x^*(x) > \|x^*\| - \varepsilon$, and let $x = u + v$, where $u \in Y$ and $v \in Z$. Then $x^*(u)x^*(v) = 0$ since $u \wedge v = 0$. If $x^*(v) = 0$, then

$$\|x^*\| - \varepsilon < x^*(x) = x^*|_Y (u) - x^*|_Y (u) \leq \|x^*|_Y \| + \|x^*-\|_Y < \|x^*\| + \varepsilon.$$

Let $\varepsilon \to 0$. Then $\|x^*\| = \|x^*\| - \|x^*\| = 0$. Similarly, assume that $x^*(u) = 0$. Then $\|x^*\| = 0$. Hence, without loss of generality, we may assume $x^* = x^*^+$.

Let $y^*, z^* \in S(X^*)$ satisfy $2x^* = y^* + z^*$. Then $2x^* = (y^* + z^*^+ - (y^* - z^*^-)$ and by properties of an abstract M space X^*,

$$\|2x^*\| \leq \|y^*\| + \|z^*\| + \|y^*\| + \|z^*\| = \|y^*\| + \|z^*\| = 2 = \|2x^*\|.$$

Thus, by Lemma 1, we have $y^* + z^* = 2x^*$ and $y^* = z^* = 0$.

Now we show that $y^* = z^* = x^*$, i.e., $x^* \in \partial B(X^*)$. To this end we notice that $y^*(y) = z^*(y) = 0$ whenever $x^*(y) = 0$ (by [7], this means $x^* = ay^* = bz^*$, but $x^*, y^*, z^* \in S(X^*)$ and $2x^* = y^* + z^*$, so $a = b = 1$). First we assume $y \geq 0$; then from $y^*(y) \geq 0$, $z^*(y) \geq 0$, and $y^*(y) + z^*(y) = 2x^*(y) = 0$ we have $y^*(y) = z^*(y) = 0$. For the general case, since $x^*(y) = 0$ and by the condition given in the theorem, $x^*(y^+)^x^*(y^-) = 0$, we have $x^*(y^+) = x^*(y^-) = 0$. Hence, $y^*(y) = z^*(y) = 0$ follows from the first case.

Necessity. Assume first that there exist $x, y \in X$ such that $x \wedge y = 0$ but $x^*(x) > 0$ and $x^*(y) > 0$. Then we put $Y = y^\perp$, and then by [5] $X = Y + Y^\perp$. Now, let $y^* = x^*|_Y$ and $z^* = x^*|_{Y^\perp}$. Then $\|y^*\| > 0$, $\|z^*\| > 0$ since $x \in Y, y \in Y^\perp$. Therefore, since

$$x^* = \|y^*\| \frac{y^*}{\|y^*\|} + \|z^*\| \frac{z^*}{\|z^*\|}$$

and $\|y^*\| + \|z^*\| = \|x^*\| = 1$ according to Lemma 1 and the intrinsic M space properties, we get that $x^* \in \partial B(X^*)$, which is desired result.
REFERENCES

Departement of Natural Science, Seoul National University of Technology, Seoul 139-743, Korea.