A NOTE ON MINIMAL SETS OF THE CIRCLE MAPS

SEUNG KAB YANG1, KYUNG JIN MIN2 AND SEONG HOON CHO3

ABSTRACT. For continuous maps f of the circle to itself, we show that (1) every ω-limit point is recurrent (or almost periodic) if and only if every ω-limit set is minimal, (2) every ω-limit set is almost periodic, then every ω-limit set contains only one minimal set.

1. Introduction

Let I be the unit interval, S^1 the circle and X a topological space. And let $C^0(X, X)$ denote the set of continuous maps from X into itself.

Let $f \in C^0(X, X)$. For any positive integer n, we define f^n inductively by $f^1 = f$ and $f^{n+1} = f \circ f^n$. Let f^0 denote the identity map of X.

For any $f \in C^0(X, X)$, let $P(f), AP(f), R(f), \Lambda(f)$ and $\Omega(f)$ denote the collection of the periodic points, almost periodic points, recurrent points, ω-limit points and nonwandering points of f, respectively.

$Y \subset X$ is called an invariant subset of f if $f(Y) \subset Y$; and strongly invariant if $f(Y) = Y$. Suppose $Y \subset X$ is non-void, closed, and invariant relative to f. If Y has no proper subset which is non-void and invariant relative to f then Y is said to be a minimal set of f.

In 1986, J.C.Xiong [5] proved that for any interval map f, every ω-limit point is recurrent (or almost periodic) if and only if every ω-limit set is minimal. We have the same result for map of the circle.

Received by the editors Nov. 13, 1997 and, in revised form Feb. 10, 1998.
1991 Mathematics Subject Classifications. Primary 58F99.
Key words and phrases. Recurrent set, almost periodic set, ω-limit set, minimal set.
3The first author was supported by Nat. Sci. Res. Ins., MyongJi Univ.
Theorem 5. Let $f \in C^0(S^1, S^1)$. Then the followings are equivalent.

1. $\Lambda(f) = AP(f)$.
2. $\Lambda(f) = R(f)$.
3. For every $x \in S^1$, the ω-limit set $\omega(x, f)$ of x is minimal.

In 1966, A.N.Sarkovskii [3] showed that for any interval map f, the following conditions (i) and (ii) are equivalent.

(i) The periods of all periodic points of f are powers of 2.

(ii) For every $x \in I$ either the ω-limit set $\omega(x)$ of x is a periodic orbit of f or the set $\omega(x)$ contains no periodic orbit of f.

In [5], J.C.Xiong showed that the condition (i) is equivalent to the following condition (iii).

(iii) For every point $x \in I$, the ω-limit set $\omega(x, f)$ of x contains only one minimal set.

In this paper, we will prove the following theorem.

Theorem 8. Let $f \in C^0(S^1, S^1)$. Suppose that $\Lambda(f) = AP(f)$. Then we have that for any $x \in S^1$, the ω-limit set $\omega(x, f)$ of x contains only one minimal set.

2. Preliminaries and definitions

Let (X, d) be a metric space and $f \in C^0(X, X)$. The forward orbit $O(x)$ of $x \in X$ is the set $\{f^k(x) \mid k = 1, 2, \ldots \}$. A point $x \in X$ is called a periodic point of f if for some positive integer n, $f^n(x) = x$. The period of x is the least such integer n. We denote the set of periodic points of f by $P(f)$.

A point $x \in X$ is called a recurrent point of f if there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to x$. We denote the set of recurrent points of f by $R(f)$.

A point $x \in X$ is called a nonwandering point of f if for every neighborhood U of x, there exists a positive integer m such that $f^m(U) \cap U \neq \emptyset$. We denote the set of nonwandering points of f by $\Omega(f)$.

A point $x \in X$ is called a almost periodic point of f if for any $\epsilon > 0$ one can find an integer $N > 0$ with the following property that for any integer $q > 0$ there exists an integer r, $q \leq r < q + N$, such that $d(f^r(x), x) < \epsilon$, where d is the metric of X. We denote the set of almost periodic points of f by $AP(f)$.
A point \(y \in X \) is called an \(\omega \)-limit point of \(x \) if there exists a sequence \(\{n_i\} \) of positive integers with \(n_i \to \infty \) such that \(f^{n_i}(x) \to y \). We denote the set of \(\omega \)-limit points of \(x \) by \(\omega(x, f) \). Define \(\Lambda(f) = \bigcup_{x \in X} \omega(x, f) \).

3. Main Results

Lemma 1[4]. Let \(f \in C^0(S^1, S^1) \). Then we have that \(x \in AP(f) \) if and only if \(x \in \omega(x, f) \) and \(\omega(x, f) \) is minimal.

The following lemma follows from [1].

Lemma 2. Let \(f \in C^0(S^1, S^1) \). Then we have

\[
P(f) \subset AP(f) \subset R(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f).
\]

The following lemma found in [2]

Lemma 3. Let \(f \in C^0(S^1, S^1) \) and let \(P(f) \) be empty. Then we have \(\Omega(f) = R(f) \).

Corollary 4. Let \(f \in C^0(S^1, S^1) \) with \(P(f) \neq \phi \). Then the followings are equivalent.

1. \(\overline{R(f)} = P(f) \).
2. \(\Omega(f) = P(f) \).
3. \(\Lambda(f) = P(f) \).

Theorem 5. Let \(f \in C^0(S^1, S^1) \). Then the following conditions are equivalent.

1. \(\Lambda(f) = AP(f) \).
2. \(\Lambda(f) = R(f) \).
3. For every \(x \in S^1 \), the \(\omega \)-limit set \(\omega(x, f) \) of \(x \) is minimal.

Proof. (1) \(\Rightarrow \) (2): Obvious by Lemma 2.

(2) \(\Rightarrow \) (3): Let \(x \) be arbitrary point in \(S^1 \), and let \(y \) be any point in \(\omega(x, f) \). Then there exists a sequence \(n_i \to \infty \) such that \(f^{n_i}(x) \to y \). Suppose that \(z \in \omega(y, f) \). Then there exists a sequence \(m_i \to \infty \) such that \(f^{m_i}(y) \to z \). Therefore \(f^{m_i+n_i}(x) \to z \), and hence \(z \in \omega(x, f) \). Thus \(\omega(y, f) \subset \omega(x, f) \). Now we show that \(\omega(x, f) \subset \omega(y, f) \). Since \(y \) is arbitrary point in \(\omega(x, f) \), it suffices to show that \(y \in \omega(y, f) \). We know that \(y \in \Lambda(f) \) by definition. By assumption, \(y \in R(f) \), and hence \(y \in \omega(y, f) \). Therefore \(\omega(x, f) \) is minimal for any \(x \in S^1 \).
(3) \Rightarrow (1): Suppose that $\omega(x, f)$ is minimal for any $x \in S^1$. Let $y \in \Lambda(f) \setminus AP(f)$. Then there exists $z \in S^1$ such that $y \in \omega(z, f)$. Since $\omega(z, f)$ is minimal, $\omega(y, f) = \omega(z, f)$. Hence $y \in \omega(y, f)$ and $\omega(y, f)$ is minimal, and hence $y \in AP(f)$ by Lemma 1. This is a contradiction.

Corollary 6. Let $f \in C^0(S^1, S^1)$. Suppose that $P(f)$ is closed. Then the followings are equivalent.

1. $R(f) = AP(f)$.
2. $\Omega(f) = AP(f)$.
3. $\Lambda(f) = AP(f)$.
4. $\Lambda(f) = R(f)$.
5. For every $x \in S^1$, the ω-limit set $\omega(x, f)$ of x is minimal.

Corollary 7. Let $f \in C^0(S^1, S^1)$. Suppose that for any $x \in S^1$, the ω-limit set $\omega(x, f)$ of x contains a minimal set containing x. Then we have $\Lambda(f) = AP(f)$.

Theorem 8. Let $f \in C^0(S^1, S^1)$. Suppose that $\Lambda(f) = AP(f)$. Then we have that for any $x \in S^1$, the ω-limit set $\omega(x, f)$ of x contains only one minimal set.

Proof. Suppose that $\Lambda(f) = AP(f)$. Let $x \in S^1$. Assume that there exist two minimal sets M, N with $M \subset \omega(x, f)$ and $N \subset \omega(x, f)$. Then for every $a \in M$ and $b \in N$, $M = \omega(a, f)$ and $N = \omega(b, f)$. We know that the ω-limit set $\omega(x, f)$ of x is minimal by Theorem 5. Since $a, b \in \omega(x, f)$,

$$M = \omega(a, f) = \omega(x, f) = \omega(b, f) = N.$$

References

1, 2 Department of Mathematics, Myongji University, Yongin 449-728, Korea.
3 Department of Mathematics, Hanseo University, Chungnam 356-820, Korea.