OPERATORS ON GENERALIZED BLOCH SPACE

KI SEONG CHOI AND GYE TAK YANG

ABSTRACT. In [5], Zhu introduces a bounded operator T from $L^\infty(D)$ into Bloch space B. In this paper, we will consider the generalized Bloch spaces B_q and find bounded operator from $L^\infty(D)$ into B_q.

1. Introduction

Let \mathbb{C} be the complex number plane and $D = \{ z \in \mathbb{C} \mid |z| < 1 \}$ be the open unit disk in \mathbb{C}. Let $dA(z)$ be the area measure on D normalized so that the area is 1. For $1 \leq p < \infty$, $L^p(D, dA)$ will denote the Banach space of Lebesgue measurable functions f on D with

$$\left[\int_{D} |f(z)|^p dA(z) \right]^{\frac{1}{p}} \leq \infty.$$

$L^\infty(D, dA)$ will denote the Banach space of Lebesgue measurable functions f on D with

$$\text{esssup}\{ |f(z)| : z \in D \} < \infty.$$

The Bloch space of D, denoted by B, consists of analytic functions f on D such that $\sup\{(1 - |z|^2)|f'(z)| : z \in D\} < \infty$. The set B of Bloch functions (modulo constant functions) become a Banach space ([1], p.13). In [5], Zhu show that the integral operator T which is represented by

$$Tf(z) = \int_{D} \frac{f(w)}{(1 - zw)^2} dA(w)$$

is a bounded operator from $L^\infty(D)$ into B.

Received by the editors Oct. 23, 1997 and, in revised form Feb. 3, 1998.
1991 Mathematics Subject Classifications. Primary 32H25, 32E25.
Key words and phrases. Generalized Bloch space.
For each $q > 0$, the space B_q consist of analytic functions f on D with the property that

$$\sup\{(1 - |z|^2)^q |f'(z)| : z \in D\} < \infty.$$

For each $q > 0$, let T_q denote the operator defined by

$$T_q f(z) = q \int_D \frac{f(w)}{(1 - zw)^{1+q}} dA(w), \quad z \in D.$$

In this paper, we will show that generalized Bloch spaces B_q are Banach spaces. Also we will investigate some properties of T_q. In particular, we will show that T_q is a bounded operator from $L^\infty(D)$ into B_q.

2. B_q is a Banach space

Let us define a norm on B_q as follows;

$$\|f\|_q = |f(0)| + \sup\{(1 - |z|^2)^q |f'(z)| : z \in D\}.$$

Lemma 1. If $f \in B_q$, $q > 0$, then

$$|f(z)| \leq |f(0)| + \|f\|_q (1 - |z|^2)^{-q}.$$

Proof.

$$|f(z) - f(0)| \leq \int_0^1 |f'(tz)||z|dt$$

$$\leq \int_0^1 \frac{|f'(tz)|(1 - |tz|^2)^q}{(1 - |tz|^2)^q}dt$$

$$\leq \|f\|_q \int_0^1 \frac{1}{(1 - t|z|^2)^q}dt$$

$$\leq \|f\|_q \frac{1}{(1 - |z|^2)^q},$$

since the first inequality follows from the followings

$$f(z) - f(0) = \int_0^1 f'(tz)zdt.$$

Thus the desired result follows. \qed
Theorem 1. For each $q > 0$, B_q is a Banach space with norm $\|\cdot\|_q$.

Proof. Let (f_n) be a Cauchy sequence in B_q. By Lemma 1,

$$|(f_n - f_m)(z) - (f_n - f_m)(0)| \leq \|f_n - f_m\|_q (1 - |z|^2)^{-q}.$$

It follows that the sequence (f_n) is a Cauchy sequence in the topology of uniform convergence on compact sets. Thus there exists holomorphic function $f : D \to \mathbb{C}$ such that $f_n \to f$ uniformly on compact subsets of D as $n \to \infty$.

Since $f_n \to f$ uniformly on compact subsets of D as $n \to \infty$, it follows that $f'_n(z) \to f'(z)$ uniformly on compact subsets of D as $n \to \infty$.

Thus, for each n

$$(1 - |z|^2)^q |(f_n - f_m)'(z)| \to (1 - |z|^2)^q |(f_n - f)'(z)| \text{ as } m \to \infty$$

for each $z \in D$. Therefore, for each sufficiently large n,

$$(1 - |z|^2)^q |(f_n - f)'(z)| \leq \varepsilon.$$

Namely, $\|f_n - f\|_q \leq \varepsilon$.

3. Operator T_q on $L^\infty(D)$

In the sequel, $C_0(D)$ is the space of complex-valued continuous functions on D which vanish on the boundary.

Theorem 2. If P is a polynomial, then there exists f in $C_0(D)$ such that $P = T_q f$.

Proof. It suffices to show that $T_q g(z) = z^n$ for some $g \in C_0(D)$. In fact, if we consider the function $g(z) = (1 - |z|^2)^2 z^n$, then

$$T_q g(z) = q \int_D \frac{(1 - |w|^2)w^n}{(1 - z\overline{w})^{1+q}} dA(w)$$

$$= q \int_D (1 - |w|^2)w^n \sum_{k=0}^{\infty} \frac{\Gamma(k+1+q)}{k!\Gamma(1+q)} (z\overline{w})^k dA(w)$$

$$= q \sum_{k=0}^{\infty} z^k \frac{\Gamma(k+1+q)}{k!\Gamma(1+q)} \int_0^{2\pi} \int_0^1 (1 - r^2)^{n+k+1} e^{i(n-k)\theta} dr d\theta$$

$$= qz^n \frac{\Gamma(n+1+q)}{n!\Gamma(1+q)} \int_0^1 (1 - r^2)^{n+1} dr$$

$$= q \frac{\Gamma(n+1+q)}{n!\Gamma(1+q)} \frac{1}{(n+1)(n+2)(n+3)} z^n.$$
In third equality, if \(n \neq k \),
\[
\int_0^{2\pi} \int_0^1 (1-r^2)^{n+k+1} e^{i(n-k)\theta} \, dr \, d\theta = 0.
\]
Thus the desired result follows. \(\square \)

Theorem 3. For each \(q > 0 \), the operator \(T_q \) maps each function of the form \(z^n \bar{z}^m \) to a monomial where \(n \) and \(m \) are positive integers such that \(n \geq m \).

Proof.

\[
T_q(z^n \bar{z}^m) = q \int_D (1 - z \bar{z})^{1+q} dA(w)
= q \int_D w^n \bar{w}^m \sum_{k=0}^{\infty} \frac{\Gamma(k+1+q)}{k! \Gamma(1+q)} z^k \bar{z}^k \, dA(w)
= q \sum_{k=0}^{\infty} \frac{\Gamma(k+1+q)}{k! \Gamma(1+q)} \int_D w^n \bar{w}^{m+k} \, dA(w)
= q \frac{\Gamma(n-m+1+q)}{(n-m)! \Gamma(1+q)} \int_D w^n \bar{w}^n \, dA(w)
= q \frac{\Gamma(n-m+1+q)}{(n-m)! \Gamma(1+q)} \frac{1}{(n+1)(n+2)(n+3)} z^{n-m}.
\]

Where, the fourth equality follows from the proof of Theorem 2. \(\square \)

Lemma 2[13, p. 17]. For \(s > -1 \) and \(t \in \mathbb{R} \), let

\[
I_{s,t}(z) = \int_D \frac{(1-|w|^2)^s}{|1-z \bar{w}|^{2+s+t}} dA(w), \quad z \in D
\]

then we have

1) \(I_{s,t}(z) \) is bounded in \(z \) if \(t < 0 \);
2) \(I_{s,t}(z) \sim -\log(1-|z|^2) \) as \(|z| \to 1^- \) if \(t = 0 \);
3) \(I_{s,t}(z) \sim (1-|z|^2)^{-t} \) as \(|z| \to 1^- \) if \(t > 0 \);

Theorem 4. For each \(q > 0 \), the operator \(T_q \) maps \(L^\infty(D) \) boundedly into \(B_q \).

proof. For every \(g \) in \(L^\infty(D) \),

\[
T_q g(z) = q \int_D \frac{g(w)}{(1-z \bar{w})^{1+q}} dA(w).
\]

\[
\frac{d}{dz}(T_q g(z)) = q(q+1) \int_D \frac{\bar{w} g(w)}{(1-z \bar{w})^{2+q}} dA(w).
\]
By Lemma 2,

\[\left| \frac{d}{dz} (T_q g(z)) \right| \leq q(q + 1)\|g\|_\infty \int_D \frac{dA(w)}{|1 - z\overline{w}|^{2+q}} \]

\[\leq C\|g\|_\infty (1 - |z|^2)^{-q} \]

for some constant $C > 0$. Since

\[|T_q g(0)| \leq q \int_D g(w) dA(w) \leq q \|g\|_\infty, \]

we obtain the following desired result

\[\|T_q g\|_q \leq (C + q)\|g\|_\infty. \]

\[\square\]

REFERENCES

DEPARTMENT OF MATHEMATICS, KONYANG UNIVERSITY, NONSAN 320-800, KOREA.

E-mail address: ksc @ kytis.konyang.ac.kr

DEPARTMENT OF MATHEMATICS, KONYANG UNIVERSITY, NONSAN 320-800, KOREA.

E-mail address: gtyang @ kytis.konyang.ac.kr