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UTI WARPED PRODUCT SPACE-TIME AND
CAUSAL BOUNDARY OF UTI SPACE-TIME

JIN HWAN KIM

ABSTRACT. We study the space-times that have a unique terminal indecomposable
past set or a unique terminal indecomposable future set and examine their causal
boundary, and we investigate some conditions for the warped product space-times of
the form (a,b) X¢ F' to have a unique terminal indecomposable past set or a unique
terminal indecomposable future set.

1. Introduction and Preliminaries

A space-time represents a time-oriented Lorentzian manifold M. The most im-
portant subject for space-time is to study singularities. In the developments con-
cerning the theory of occurrence of singularities in a space-time, the causal structure
of the space-time has been extensively discussed and various causality conditions
have been considered in many physical and mathematical situations and character-
ized in terms of various methods by many authors. If we regard singularities simply
as points of a boundary of a space-time manifold, one can ask how such a boundary
should be constructed. In order to have a better description of space-time singu-
larities, one would like to construct an enlarged topological space M interpreted as
the space-time manifold M with some singular boundary attached. M has a unified
structure incorporating singular as well as nonsingular points. Several attempts
have been made to construct a boundary to a space-time and the boundary struc-
tures are examined ({2}, [3], [6], [9], [11], [12] etc.). Among various constructions,
the causal boundary construction given by Geroch, Kronheimer and Penrose [3] is
probably the most interesting one even though the enlarged space M is constructed
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in an implicit way to be Hausdorff topological space. To examine the causal bound-
ary construction, one has to investigate indecomposable sets and to do it one has
to study the future (past) inextendible nonspacelike curves.

In this paper, we study space-times that have a unique terminal indecomposable
past set or a unique terminal indecomposable future set and examine their causal
boundary, and we investigate some conditions for the warped product space-times
of the form (a,b) xs F to have a unique terminal indecomposable past set or a
unique terminal indecomposable future set.

The standard space-time models of the universe are warped products, for exam-
ple, the exterior Schwarzschild space-time and Robertson-Walker space-time etc.
Robertson-Walker space-times include Minkowski space and Einstein static universe
space-time. Several properties of Lorentzian warped products have been studied and
examined geometrically ([1],[7]).

We first recall the concepts and notations of Lorentzian warped products. Sup-
pose that (B, gg) is a Lorentzian manifold and (F, gr) is a Riemannian manifold and
let f be a positive smooth function on B. The Lorentzian warped product B x; F’
is the product manifold B x F' furnished with the Lorentzian metric ¢ = g @ fgr
which is defined for tangent vectors v,w to B x¢ F' at p = (p1,p2) by

9(v,w) = gp(dn(v), dr(w)) + f(p1)gr(do(v), do(w)).

where 7 and o are the projections of B x; F' onto B and F respectively. In the
case that B is a space-time, the warped product B x s F' is also a space-time, it is
called a warped product space-time.

Now, we state some concepts and notations which are used for our subsequent
works. As usual, the chronological (causal) relation is written as < (<), and IT(A)
(I=(A)), J*(A) (J~(A)) shall denote the chronological future (past), causal future
(past) of a subset A in a space-time M. For a single point p, we abbreviate It ({p})
by I*(p) and similarly for /=, J* and J~. A space-time M is distinguishing if
It(p) = I't(q) or I (p) = I"(q) implies p = ¢q. M is strongly causal if for every
point p in M and any neighborhood U of p there is a neighborhood V of p contained
in U such that no nonspacelike curve intersects V more than once. M is stably
causal if it admits a global time function, i.e., a C° function from M to R which is
strictly increasing along each future-directed nonspacelike curve. We say that M is
causally continuous if it is distinguishing and It (p) C It (q) iff I~ (¢) C I~ (p) for
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all p,g € M. M is causally simple if it is distinguishing and J*(p) and J~(p) are
closed for all p € M. A strongly causal space-time M is globally hyperbolic if for each
pair of points p, ¢ in M, the set J*(p)NJ~(p) is compact. The causality conditions
as above can be arranged in the following implications: global hyperbolicity =
causal simplicity = causal continuity = stable causality = strong causality =
distinguishing. The respective converse implications are all false.

An open subset P (respectively, F') of space-time M is called a past (respectively,
future) set if P = I~(P) (respectively, F = I"(F)). A nonempty past subset of
a space-time is called an indecomposable past set if it cannot be expressed as a
union of two proper past subsets. An indecomposable future set is defined dually.
The indecomposable past sets so defined are divided into two classes, consisting
of those which are the chronological pasts of a single point (these sets are called
proper indecomposable past (PIP) sets) and those which are not (these sets are called
terminal indecomposable past ( TIP) sets). Proper indecomposable future (PIF') sets
and terminal indecomposable future (TIF) sets are defined dually.

A causal space is a set X equipped with two relations, < and <, between the
points of X, such that (1) < is a reflexive partial ordering (2) < is anti-reflexive
(3) z < y implies ¢ < y and (4) either z K y < z or £ € y < z implies £ < y. Any
space-time is a causal space with respect to its causal relations. The Alezandrov
topology in a causal space X is the coarest topology in which I+ (z) and I~ (x) are
open for all z € M, where I'*(z) = {y € X|z < y} and I~ (z) = {y € X|y < z}.

Dual results will often be taken for granted. All of the other terminologies and
concepts will be referred to Beem, Ehrlich and Easley [1].

2. UTI space-time

A space-time M is UTI if it has a unique TIP set and a unique TIF set.
The following lemma is useful to represent TIP sets. This result is due to Theo-
rem 2.1 and 2.3 of Geroch, Kronheimer and Penrose [3].

Lemma 2.1. A subset P of a strongly causal space-time M s a terminal indecom-
posable past set if and only if there exists a future-directed and future-ineztendible
timelike (nonspacelike) curve v in M such that P = I~ (y).

From Lemma 2.1, we can have the following immediately.
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Lemma 2.2. Let M be a strongly causal space-time. Then M has a unique TIP
set if and only if M itself is the unique TIP set.

A curve 7 is a limit curve of the sequence {v,} in a space-time M if there is a
subsequence {7y, } of {7.} such that for all p in the image of v, each neighborhood
of p intersects all but a finite number of curves of the sequence {v,,}.

We note that if 7 is a limit curve of the sequence{~,} of nonspacelike curves in a
strongly causal space-time M, then v is also nonspacelike and we state an important
result which is given in [1] and useful to treat Theorem 2.5.

Lemma 2.3. Let {7} be a sequence of future inextendible nonspacelike curves in
a space-time M. If p is an accumulation point of the sequence {7,}, then there is
a nonspacelike limit curve vy of the sequence {y,} such that p € v and v is future
inextendible.

We now consider the concept of convergence in the C° topology. Let v and all
curves of the sequence {7,} be defined on the closed interval [a,b]. The sequence
{yn} is said to converge to 7y in the C° topology on curves if y,(a) — ¥(a), yn(b) —
v(b), and given any open set V containing +, there is an integer ng such that v, C V
for all n > ng. In a strongly causal space-time, these two types of convergences for
sequences of nonspacelike curves are almost equivalent, which is precisely stated as
following [1].

Lemma 2.4. Let M be a strongly causal space-time. Suppose that {yn} is a se-
quence of nonspacelike curves defined on [a,b] such that v,(a) — p and y,(b) — q.
A nonspacelike curve 7y : [a,b] — M with of y(a) = p and v(b) = q is a limit curve
of {vn} if and only if there is a subsequence {Yn,} of {vn} which converges to v in
the C° topology on curves.

Using the above lemmas, we are going to show the following result.

Theorem 2.5. If a strongly causal space-time M has a unique TIP set or a unique
TIF set, then M 1is globally hyperbolic.

Proof. Suppose that M has a unique TIP set and p, ¢ are any points of M such
that p < ¢q. Let {z,} be an infinite sequence in J*(p) N J~(g) and let {y,} be a
sequence of nonspacelike curves from p to ¢ such that 7, passes through z,. Then
{7~ — ¢} is a sequence of future inextendible nonspacelike curves in the space-time
M — {q} as an open set of M. By Lemma 2.3, there is a nonspacelike limit curve



UTI WARPED PRODUCT SPACE-TIME AND CAUSAL BOUNDARY 49

~ of the sequence {7y, — ¢} such that v starts at p and is future inextendible in
M —{q}. The curve v can be extended to g which is a future endpoint in M. If not,
7 is future inextendible nonspacelike curve in M such that v C J™(q). M = I~ (y)
by Lemma 2.2, and so M C I~(q). It contradicts to the strong causality of M.
Hence by Lemma 2.4, there is a subsequence {, } of {7} which converges to the
curve 7, which is also considered as the extended curve to g, in the C° topology
on curves. Let U be a neighborhood of v in M such that U is compact. Then U
contains all vy,, and so U contains all z,, for k sufficiently large. Hence there is a
point z € U which is a limit point of the subsequence {z,, } of {z,}. Clearly z € v
and z € J*(p) N J(q). Thus J*(p) N J~(g) is compact.

3. Warped product as UTI space-time

Throughout this section we shall consider Loreantzian warped products of the
form (a,b) x ¢ F where (F, gr) is a Riemannian manifold and (a,b), —c0o <a <b <
00, has the negative definite metric —dt*. Hence the metric tensor g of (a,b) X F'
is given by g = —dt®> @ fgr. Regard this warped product as a space-time by the
timelike vector field on M metrically equivalent to dt. In particular, a Robertson-
Walker space-time is a special space-time which can be written in the form (a, b) x 5 F
[1].

We introduce two lemmas which are shown in [1], and we shall give several results
which are related the UTI condition of the warped product space-time of the form
(a, b) Xf F.

Lemma 3.1. Let F be a complete Riemannian manifold. If p: [c,d) — F is a
curve with finite arclength, then there is m € F such that u(t) - m ast — d~.

Lemma 3.2. Let (F,gr) be a Riemannian manifold and B = (a,b), —oo0 < a <
b < 00, have the negative definite metric —dt? and let g = —dt®> ® fgp, Then

(1) (B x5 F,g) is stably causal (The first projection m serves as a global time
function).

(2) (B x5 F,g) is globally hyperbolic if and only if (F, gr) is complete.

Theorem 3.3. Let (F,gr) be a Riemannian manifold and B = (a,b), —oco <
a < b < oo, have the negative definite metric —dt? and let g = —dt? @ fgp. If
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M = (B x¢ F, g) has a unique TIP set (respectively, TIF set), then F is complete
and b = oo (respectively, a = —00).

Proof. If M = (B x; F,g) has a unique TIP set, by Theorem 2.5, (B xs F,g) is
globally hyperbolic, so from Lemma 3.2, F' is a complete Riemannian manifold.
Suppose that b < oo and let p; and p; be distinct points of F. If we consider
m : [a1,b) = M and vz : [ag,b) — M given by v1(t) = (¢,p1), and 1(t) = (¢, p2)
respectively. Then 7v; and 7, are future-inextedible timelike curves in M. Moreover,
I (1) and I~ (7y2) are different TIP sets in M. It contradicts. Thus b = co.

Theorem 3.4. Let (F,gr) be a complete Riemannian manifold with finite diameter
and (a,b), —oo < a < b < oo, have the negative definite metric —dt? and let f :
(a,b) — (0,00) be bounded by positive numbers.

(1) If b= o0, then M = (a,b) x¢ F' has a unique TIP set.
(2) If a = —o0, then M = (a,b) x¢ F' has a unique TIF set.

Proof. Suppose that f is bounded by positive numbers r; and ro (1 < 732), and let
6 denote the diameter of F' with respect to the Riemannian distance function dg
induced by gp.

(1) Let P be any TIP set in M and let u : [ag,bg) — M be a future-directed
and future-inextendible timelike curve such that P = I~ (u). It suffices to show
that P = M by Lemma 2.2. Reparametrizing u by v = (7 o u)~(u), we have a
future-directed and future-inextendible timelike curve v defined on [a1, b1) € (a, o)
with m(y(u)) = u. We claim that b; = oo. Since

9(v(u), ¥(u)) = =1 + f(u)gr(do(y/(v)), do(y/(u))) <O,

gr(do(y/(u), do(y/(u))) < 1/r1.

If by < oo, the arc-length of o o« : [a1,b1) — F in F is equal to or less than
(b1 — a1)/+/T1 and so the arc-length of ¢ oy is finite. By lemma 3.1. there exists
po € F such that (o oy)(u) — po as u — by . Therefore (b1,po) € M is the future
endpoint of 7. It contradicts. Hence b; = oo. For arbitrary point p = (ug, m) € M,
let ¢ = y(mw(p) + (r2 +1)8) and choose the minimizing geodesic segment o in F' with
unit speed from a(0) = o(p) to o(q). Now define §: [0, (re + 1)6] - M by

dO (U(p)? O'(Q)) u))

B(u) = (ug + u, o (ra + 1)



UTI WARPED PRODUCT SPACE-TIME AND CAUSAL BOUNDARY

Then B(0) = (n(p),o(p)) = p,
B(r2 +1)8) = (n(p) + (r2 + 1)§, 0 (7(7(p) + (r2 + 1)9)))
=7(7(p) + (r2 + 1)9)
€ 7(la1, ).

On the other hand,

do(o(p),o(q))
(Tz + 1)5

9(B'(w), 7' (uo + ) < =1+ f(uo +u)gr(do(B'(u), do(v' (uo + u)))

9(B'(u), B'(u)) = =1+ f(uo + u)]

? <0,

do(o(p), 0(q))

< =1+ fluo + w)[gr(do(y (uo +u)), do (v (uo +u)))] 3| (ro+1)8

fluo +u)
T2+1

]

W=

<-1+ lgr(do (' (uo + ), do (¥ (uo + u)))]

< 0.
Hence § is a future-directed timelike curve in M, and
p=pB0) e I"(B((rz: +1)d)) CI" (7).

Therefore P = I~ (u) = I~ () = M. It completes (1).
(2) It is obtained by the similar method to (1).

Corollary 3.5. Let (F,gr) be a compact Riemannian manifold and let f be a
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smooth function on R bounded by positive numbers, let M = (R x ¢ F, —dt> @ fgr).

Then M 1s UTL

The Einstein static universe is a simplest example of a Robertson-Walker space-

time and the n-dimensional Einstein static universe is defined as the warped product
space-time R x s F, where R has negative definite metric —dt?, F = S"~! has the
standard spherical Riemannian metric, and f : R — (0, 00) is the trivial warping

function f = 1. Thus we have the following corollary.

Corollary 3.6. The n-dimensional Einstein static universe is an UTI space-time.

4. Causal boundary of UTI space-time
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In this section, any space-time M is assumed to be strongly causal.

To introduce some kind of boundary for any space-time (M, g) one has to an
enlarged topological space M and an open dense embedding ¢ and the set M — (M)
is interpreted as the boundary of M. Various constructions have been put forward.
The causal boundary construction given by Geroch, Kronheimer and Penrose [3]
makes use only of the causal structure of the space-time and thus it is conformally
invariant. However it is difficult to construct Hausdorff topological space M as a
causal space. The causal boundary by Geroch et al is obtained from constructing
the space M which consists of the future and past endpoints of all nonspacelike
curves and is a Hausdorff space. Here M is open dense embedded in this space M.

Denote by M the collection of all indecomposable past sets of a space-time M,
and M the collection of all indecomposable future sets of M. Let M* be the space
by taking the union M U M and identifying I*(p) € M with I ~(p) € M for each
p € M. The element of M* corresponding to an element Q of M U M is written as
Q*. The topology 7 on M™* consists of the sets defined to be the unions and finite
intersections subsets of the form P, P¢%t F** and Fe*t where P € M, F € M,

and

P — {Q*|Q € M and PN Q # 0}
Pt = {Q*|Q € M and if Q = I'(S) for some S C M,
then I~ (S) € P}.

F"t and F°* are defined dually, with the roles of past and future interchanged. The
pair (M, 7) is the quotient space obtained from the space (M*, 7*) by identifying the
smallest number of points of M* necessary to obtain a Hausdorff space. M contains
the causal boundary .M consisting of TIPs and TIFs where identifications has been
made as above.

In this section, for UTI space-times we consider the causal boundary constructed
by Geroch, Kronheimer and Penrose [3].

Throughout the rest of this section, we assume that M is UTL Let ¢* = {I*(q),
I7(q)} and let co denote the unique TIP set and co denote the unique TIF set of
M. The following lemma can be shown easily from the definitions of int-, ext-sets
as given above.

It (p)™ = {q*,c0lp < q}, I~ (p)"™ = {q*, c0lq < p},
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It (p)*=t = {g*, %lq ﬁ p}, I7(0)**" = {¢*,%lp £ ¢}
S 1nt M* _ {OO} 3 m.t {OO} s.ext =0, Ovoext @
We define relations < and < in M* as follows:
P* & Q* lﬁ' Q* € Pint or P* € Qint

P* S Q* iff Q* ¢ Pe:tt or P* ¢ Qext
Lemma 4.1. For arbitrary points p,q in a strongly causal UTI space-time M,
(1) p" < ¢ if p<ginM,
(2) oo K p* K o0,
(3) pr<q" iff p<qin M.
For P* € M*, define

JH(P*) ={Q" € M"|P* < Q"}, J7(P") ={Q" € M"|Q" < P"}
From Lemma 4.1, we obtain the following.

Lemma 4.2. Let M be a strongly causal UTI space-time. Then

(1) Forpe M, {IT(a*)NI~(b*)|a <« p < b} forms a neighborhood base of p*
in (M>,7*).

(2) {IT(p*)lp € M} forms a neighborhood base of co in (M*,7*).

(3) {I"(p*)|p € M} forms a neighborhood base of o in (M*,T*).

These lemmas give rise to the following results.

Theorem 4.3. Let M be a strongly causal UTI space-time. Then

(1) M™ is a causal space relative to the above relations < and <
(2) (M*,7*) is a Hausdorff space and 7 is the Alexandrov topology of M* as

a causal space.

From Theorem 4.3, further identification is not required for Hausdorff condition.
Thus we regard the space M as the same topological space as M* and the same
causal space as M™. Since M satisfies strong causality, the space-time topology is
equal to the Alexandrov topology induced by the causal relations of M [8]. 7* is
considered as the extended Alexandrov topology to the space attached boundary.
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Theorem 4.4. Let M be a strongly causal UTI space-time. Then

(1) i : (M,7) — (M,7) given by i(p) = p* for p € M, is an open dense
embedding and so M = i(M) U 8.M, where .M = {0, %}.
(2) If v is any inextendible nonspacelike curve in M, then i o~ is a curve in

(M, 7) with o initial endpoint and o the terminal endpoint.

Corollary 4.5. Let (F,gr) be a compact Riemannian manifold and let f be a
smooth function on R bounded by positive numbers, let M = (R x5 F, —dt* ® fgr).
Then M is a compact space.

Proof. Let R = {0, —0o} UR be the extended real space. Since R is homeomorphic
to the closed interval [0, 1], th product space R x F is compact. Define an equivalence
relation in R x F by (s,a) ~ (t,b) iff [s = t and @ = b] or [s = t = 00 or
[s =t = —o0]. Then the quotient space by this equivalence relation is compact and

it is homeomorphic to M.
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