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Differential Quadrature Analysis for
Vibration of Wide-Flange Curved Beams
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ABSTRACT

The differential quadrature method (D.Q.M.) is applied to computation of eigenvalues of
small-amplitude free vibration for horizontally curved beams including a warping contribution.
Fundamental frequencies are calculated for a single-span, curved, wide-flange beam with both
ends simply supported or clamped, or simply supported-clamped end conditions. The results are
compared with existing exact solutions and numerical solutions by other methods for cases in
which they are available. The differential quadrature method gives good accuracy even when
only a limited number of grid points is used.
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1. Introduction of technology and engineering, the dynamic
behavior of horizontally curved girders has
Owing to their importance in many fields been the subject of a large number of in-
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vestigations. Solutions of the relevant differ-
ential equations have traditionally been ob-
tained by the standard finite difference method
or finite element method. These techniques
require a great deal of computation time as
the number of discrete nodes becomes relati-
vely large under conditions of complex geo-
metry and loading. In many cases, the mo-
derately accurate solution which can be cal-
culated rapidly is desired at a few points in
physical domain.

Culver” and Shore and Chaudhuri® studied
the free vibration of horizontally curved
beams using closed-form solutions. Tan and
Shore” calculated the dynamic response of a
single-span curved beam to moving loads.
Chaudhuri and Shore” studied the free vibra-
tion of horizontally curved beams using the
finite element method(FEM). Snyder and Wil-
son” calculated the free vibration frequencies
of continuous horizontally curved beams using
a nonexplicit closed-form solution of the par-
tial differential equations of motion.

A rather efficient alternate procedure for
the solution of partial differential equations is
the method of differential quadrature which
was introduced by Bellman and Casti®. This
simple direct technique can be applied to a
large number of cases to circumvent the dif-
ficulties of programming complex algorithms
for the computer, as well as excessive use of
storage. The objectives of the work are to
apply the method to certain new problems,
not previously reported in the literature. This
method is used in the present work to an-
alyze the free vibration behavior of circularly
curved beams, specifically, of a single-span,
horizontally curved, wide-flange beam includ-
ing a warping contribution but neglecting the
effects of rotatory inertia and transverse sh-
earing deformation. The lowest frequencies
are calculated for the member. The cross-
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sectional shape is assumed to be constant
along the entire length of the member and
doubly symmetric; ie., the shear center and
centroid coincide. The member has both ends
either simply supported or clamped, or has
simply supported-clamped ends. Numerical re-
sults are compared with existing exact solu—
tions and numerical solutions by the Rayleigh
-Ritz method and the finite element method.

2. Governing Differential Equations

Fig. 1 Coordinate system for wide-flange curved beam

The differential equations governing a hori-
zontally curved beam as shown in Fig. 1 can
be written as (Culver')

( RZ +E1x) 324 R2 azz
+ El, a4¢_ EI .+ GK ¢ 82¢
R 32! R 9z 2
2
= gtg ................................ 1)
El, 3% EI,*GK71 3%
R 32 R 9z
3¢ 9% . EI,
+EIw 624 GKT azz+ R2 ¢
2
ZMID%? .............................. (2)

where E is the modulus of elasticity, G is the
shear modulus, I, is the polar moment of
inertia of the cross section about the shear
center, I, is the rectangular area moment of
inertia about the x-axis (see Fig. 1), I, is the
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warping constant, K7 is the Saint-Venant
torsion constant, m is the density, R is the
mean radius of curvature, v is the displace-
ment of the shear center in the y-direction,
and ¢ is the angle of twist of the beam
cross section.

To find the corresponding free vibration
frequencies, the following normal-mode solu-
tions are assumed :

Wz, t) = Wz)sinwt,

#(z, 1) @(2)sin w!
Here, « is the circular frequency of the
member.

Replacing z by Ré& and using (3ab), one
can rewrite (1) and (2) as

EI, vl  GKr V-
( R? +EI"> R'9% R? R%6%
L+ EL oV EIL.+GK: ¢’
R R4} R R%9}
——mszV:O .............................. (4)
EI, vV El,+GKr Vv’
R R'6% R R%6}
oV . @ | El
g P =) e 5)

where each prime denotes one differentiation
with respect to the dimensionless distance
coordinate X=6/6¢, in which 8¢ is the
opening angle of the member and & is the
angle from left support to a generic point.

The following boundary conditions are ta-
ken for simply supported ends (Tan and
Shore’) : (a) No vertical deflection; (b) no tor-
sional rotation; (c) no bending moments; and
(d) the planes of the end cross section are
free to warp.

The bending moment M, and the warping
normal stress o, of the beam can be written
as (Christiano and Culver®)

s Abed ob M EtE| X M3 H3E ‘98 9%

2
Mx:E[x(_}%_ Zzg) ..................... 6)
_ B2 d®¢ , 1 d*
Cu="7 = EQ( dzt R dzz)

The warping stress is expressed in terms
of the cross—sectional property £, the unit
warping, and the bimoment Bu(By,=/ ¢ 2
dA), which equals zero at simply supported
ends.

For clamped ends, v, ¢, dv/dz, and ¢
equal zero where t represents the warping
as defined by Vlasov®). It can be written as
(Chaudhuri and Shore™®)

z—(z):_(_}e._%+%) .................. (8)

The boundary conditions for both ends
simply supported, both ends clamped, and for
mixed simply supported-clamped ends are,
respectively

v=¢=0v"=¢"=0, at 6=0,0,

for both ends simply supported ----...... 9)
v=¢=0=¢ =0, at 6=0,0,

for both ends clamped - eovererenmeenns 10)
v=¢=0v" =¢" =0, a =0,

v=¢=v=¢ =0, at §=40,
for simply supported-clamped ends -- (11)

3. Differential Quadrature Method

The Differential Quadrature Method was
introduced by Bellman and Casti®. By for-
mulating the quadrature rule for a derivative
as an analogous extension of quadrature for
integrals in their introductory paper, they pro-
posed the differential quadrature method as a
new technique for the numerical solution of
initial value problems of ordinary and partial
differential equations. It was applied for the
first time to static analysis of structural com-
ponents by Jang et al'”. The versatility of
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the D.QM. to engineering analysis in general
and to structural analysis in particular is be-
coming increasingly evident by the related
publications of recent years. Kukreti et al”?
calculated the fundamental frequencies of ta-
pered plates, and Farsa et al? applied the
method to analysis and detailed parametric
evaluation of the fundamental frequencies of
general anisotropic and laminated plates. In
another development, the quadrature method
was introduced in lubrication mechanics by
Malik and Bert'. Kang and Bert' applied the
method to the flexural-torsional buckling an-
alysis of circular arches. From a mathematical
point of view, the application of the differen—
tial quadrature method to a partial differential
equation can be expressed as follows:

L{J(X)}, = g W,',' f(x,)

fOf i, j=1’2'-“,1\/ .................. (12)
where L denotes a differential operator, x;
are the discrete points considered in the
domain, f(x;) are the function values at these
points, W; are the weighting coefficients
attached to these function values, and N
denotes the number of discrete points in the
domain. This equation, thus, can be expressed
as the derivatives of a function at a discrete
point in terms of the function values at all
discrete points in the variable domain.

The general form of the function f(x) is
taken as

fl=x%"1for £=1,2,3,...,N - (13)

If the differential operator L represents an
n" derivative, then

g‘ Wi ¥ = (k= 1)(k= 2)-++(k— mx =771

for 4 h=1,2, ... N coorerrrerreieenns (14)
This expression represents N sets of N
linear algebraic equations, giving a unique
solution for the weighting coefficients, Wj,
since the coefficient matrix is a Vandermonde
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matrix which always has an inverse, as

described by Hammingw).

4. Application

The method of differential quadrature is
applied here to the free vibration analysis of
horizontally curved beams. The differential
quadrature approximations of the governing
equation and the boundary conditions are
given below.

Applying the DQM. to Egs.(4) and (5)
gives

( ngw +EI") R‘}eé g‘\D"’V’_ G]fzr
R%t?% P BiiVi'*_% R‘}HS ﬁlDiﬂ’;
B EI,;;GKT R‘}eg gBﬁ@j
—mAw?V;=0, j=1,2,3,~,N - (15)
g2 g\BﬁV,-+EIwR—}9‘8- 20,0,

- GKT—R§9% gB,-,-¢j+% 0,

—ml w?®;=0, 7=1,2,3,,N - (16)
where By and Dj; are the weighting coeffi-
cients for the second- and fourth-order deri-
vatives, respectively, along the dimensionless
axis.

The boundary conditions for simply sup-
ported ends, given by Egs.(9), can be ex-
pressed in differential quadrature form as

Vl = 0 at X:O ........................... (17)
Ql = 0 at X =0 rreeeemreiiiiiiniiin (18)
ﬁlejV,‘:O at X=0+¢g -eooreeeeer (19
=
ﬁ:‘Bz,mj:o at X=0+8 e (20)
=
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The boundary conditions for clamped ends,
given by Eqgs.(10), can be expressed in dif-
ferential quadrature form as

Vi=0 at X=0 o, (25)
Q=0 at X=0 oo (26)
f’\A BV, =0 at X=0+8 «oeeeeee 27
=

ﬁ\A 2/‘(1)/' 0 at X=0+48 ceoveeveeens (28)

where A; are the weighting coefficients for
the first-order derivative, and & denotes a
very small distance measured along the di-
mensionless axis from the boundary ends.
This & approach is used to apply more than
one boundary condition at a given station.

Similarly, the boundary conditions for one
simply supported and one clamped end, given
by Eqs.(11), can be expressed in differential
quadrature form as

V=0 at X=0 e (33)
@1 — O at X:() ........................... (34)
ﬁ"le.Vj =0 at X=0+8 -oorereeeeee (35)
=

jﬁlBZj¢j = 0 at X:0+ G e (36)

ﬁ;A (N_l)jV,':O at X=1—-68 - 37
=

gA(N—w@/ZO at X=1—g - (38)
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V=0 at X=1 -oorreermmmm. (39)
Oy=0 at X=1 crcerremenm. 40)

Mixed boundaries can be easily accommo-
dated by combining these equations. While
most analytical methods use the rather labori-
ous technique of superposition to arrive at
solutions for mixed boundary problems, this
approach of breaking the problem ‘into several
easy subproblems is not required in differen-
tial quadrature method. This set of equations
together with the appropriate boundary condi-
tions can be solved for the fundamental na-
tural frequencies of the member.

5. Numerical Results and Compari-
sons

The fundamental natural frequencies of a
horizontally curved beam are calculated by the
differential quadrature method and are pre-
sented together with existing exact solutions
and numerical solutions by the Rayleigh-Ritz
method and the finite element method. The
fundamental natural frequencies are evaluated
for the case of a single-span, horizontally
curved, wide-flange beam with both ends
simply supported or clamped, or with mixed
simply supported-clamped end conditions.

The first example considered here has a
constant radius of curvature of 326.136 cm
(1284in.) and a variety of opening angles
ranging from 10° to 90°. Cross-sectional pro-
perties of the beam are:

A=929cm’(14.4in%), L=11362cm*(273in"),
I,=3817 cm*(93in."), I,=555878 cm®(2070 in%),
and Kr=1470.84 cm*(35.34in.").

Values used for the elastic modulus, shear
modulus, and density are:

E=200.1 GN/m{(29000 ksi),  G=T1.3 GN/m’
(11200 ksi), and m=0.786%10 ° N—sec’/cm’
(0.735% 10 % kip—sec?/in.%).

Tables 1 and 2 present the results of con-
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vergence studies relative to the number of
grid points N and the & parameter, respec-
tively, with 8¢=90". Table 1 shows that the
accuracy of the numerical solution increases
with increasing N and passes through a ma-
ximum. Then, numerical instabilities arise if
N becomes too large. Table 2 shows the sen-
sitivity of the numerical solution to the choice
of 8. The optimal value for & is found to be
1X107° to 1x107° which is obtained from
trial-and-error calculations. The solution ac-
curacy decreases due to numerical instabilities
if & becomes too small. The remainder of the
numerical results are computed with thirteen
discrete points along the dimensionless X-axis
and 8§ =1x10"°

Table 1 Fundamental frequency of free vibration, @, of
curved beams with both ends simply sup-

Table 3 Fundamental frequency of free vibration, @, of
curved beams with both ends simply sup-
ported: warping included and torsional inertia

neglected
9, o, radians per second
degrees Shore and Chaudhuri” DQM
(Exact)
10° 16815 16795
20° 39281 39133
30° 1542.2 1536.2
40° 745.96 74381
50° 406.78 406.01
60° 240.21 23991
70 150.12 149.90
80° 97.526 97.475
90° 65.219 65.195

Table 4 Fundamental frequency of free vibration, @, of
curved beams with both ends simply sup-
ported ; with and without warping

ported for a range of grid points, 6,=90" ; a . radians per second
, . o N
wa:f)mg and torsional inertia mc\uged . degrees Culver” . Culver" DM,
Culver’ (Exact) Number of grid points (Exact) T | (Bxact), =0 [,=0
w, radians per second 7 9 11 13 10 10615 10614 5340.2 5339.6
64615 68950 | 64552 | 64629 | 64628 200 | 31301 | 31299 246038 24600
] . 30° 1361.1 1361.1 1241.4 1241.3
Table 2 Fundamental frequency of free vibration, @, of pe 06 0061 10 .09
curved beams with both ends simply sup- - - . .
ported for a range of &, 60=90"; warping 0 387.50 | 38750 373.35 373.35
and torsional inertia included 60° 23287 | 23287 226.35 22635
Culver” 70° 14701 | 147.01 14374 143.74
(Exact) d 20° 96.214 96.215 94.473 94.473
w, radians s s e . o 90° 64.615 64.616 63.648 63.648
1X10°°11x10 *]1x10 "{1x10°°[1X10
per second
64615 | 76972 | 65946 | 64749 | 64628 | 64616 ing or neglecting warping deformation for the

Shore and Chaudhuri’® determined the na-
tural frequencies of the member neglecting the
torsional inertia term, m[pcuzqo, in Eq.4). In
Table 3, the natural frequencies determined by
the differential quadrature method are com-
pared with the exact solutions by Shore and
Chaudhuri® for the case of simply supported
ends.

In Table 4, the exact solutions by Culver”
are compared with those by the D.QM. includ-
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case of simply supported ends.

From Table 4, the
the member including warping deformations
are higher than those of the member ne-
glecting warping deformations. From Tables 3
and 4, the natural frequencies of the member
neglecting torsional inertia are higher than
those of the member including torsional
inertia.

Culver” determined the natural frequencies
of the member using the Rayleigh-Ritz method

natural frequencies of
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Table 5 Fundamental frequency of free vibration, @, of
curved beams with both ends clamped: war-
ping and torsional inertia included

9 w, radjins per second
Culver

degrees (Rayleigh-Ritz solution) DOM.
10° 21875 21871
20° 6096.9 6091.3
30° 3131.8 3126.2
40° 1965.0 1962.8
50° 13088 1305.7
60° 916,58 909.92
70° 762.76 662.23
30° 513.23 499.09
90° 403.88 386.55

Table 6 Fundamental frequency of free vibration, w, of
curved beams with one simply supported and
one clamped end; warping and torsional iner-

tia included
05, “(J: , 1radila’ns per second
ulver

degrees (Ravleigh-Ritz solution) DQM.
10° 15588 15585
20° 45769 4571.1
30 22837 2281.2
40° 1309.1 13055
50° 822.84 814.80
60° 556.81 543.87
70 398.83 381.37
80° 20871 271.35
90° 231.69 207.32

for the cases of clamped ends and mixed
simply supported-clamped ends. The results
are summarized in Tables 5 and 6. From
Tables 4 and 5, the natural frequencies of the
member with clamped ends are much higher
than those of the member with simply
supported ends. Tables 5 and 6 show that the
natural frequencies of the member with cl-
amped ends are higher than those of the
member with simply supported-clamped ends.
From Tables 5 and 6, the numerical results
by the D.QM. are lower than those by the

st ot Etelx| 132 M3 "9 9

Rayleigh~Ritz method, and the difference of
the numerical results between the two me-
thods decreases as the opening angle of the
member decreases.

Chaudhuri and Shore" determined the na-
tural frequencies of the following example us—
ing the finite element method (FEM) for the
cases of simply supported ends. neglecting
warping deformation and torsional inertia.
This example considered here has a constant
radius of curvature of 254 cm(100in.) with 6
=75". Cross-sectional properties of the beam
are .

A=327cm’ (50.0inf), L,=17341.8 cm’ (41667
in'), I,=433543cm® (104.167in"), and Kr=
1191373 em* (286.25in.").

Values used for the elastic modulus, shear
modulus, and density are:

E=207000 GN/m*(30.0x10° ksi),  G=19615
GN/m® (11.54x10° ksi), and m=7.865x10 *N
—sec’/em’® (7.35%107* Ib—sec’/in%).

In Table 7, the natural frequencies deter-
mined by the D.QM. are compared with those
by the FEM. Table 7 shows that the numen-
cal results by the D.QM. are more accurate
than those by the FEM (91 grid points). As
can be seen, the numerical results by the dif-
ferential quadrature method show excellent
agreement with the exact solutions, the Rayl-
eigh-Ritz solutions, and the finite element
solutions,

Table 7 Fundamental frequency of free vibration, @, of
curved beams with both ends simply sup-
ported ; warping and torsional inertia neglected

w, radians per second
o, Shore and Chaudhuri and
degrees | Chaudhui® | D.QM. | Shore” (Finite
(Exact) element solution)
75 215.66 215.57 21424

6. Conclusions

The differential quadrature method was
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used to compute the eigenvalues of free vi-
bration of horizontally curved beams including
warping deformations. The present method
gives results which agree very well with the
exact ones and with numerical solutions by
other methods for the cases treated while re-
quiring only a limited number of grid points.
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