Synthesis of \boldsymbol{N}-Benzylhomo-(-)-anisomycin

Guncheol Kim*, Hyun Woong Hong ${ }^{\dagger}$, and Sang Hee Lee ${ }^{*}$
Departmen of Chemistry: College of Natural Sciences, Chungnam National Universib: Taejon 305-76t. Koreat Deparment of Chemistry. Kunsan National University, (honhuk 573-701. Korea
Received (octoher 28, 1997

Anisomycin. a fermentation product of various species of Streptompers. ${ }^{1}$ is an antibiotic that possesses marked activities against pathogenic protozoa and fungi. and has been used successfully clinically in the treatment of amebic dysentery and trichomonas vaginitis. ${ }^{-}$Considerable synthetic efforts. derivative syntheses as well as total syntheses, have been reported until recently. Especially. the synthesis of its analogues has revealed the structure-activity relationships of synthetic antibiotics. ${ }^{4}$ However. few result of the chain extention effect of the p-methoxybenzyl group has been reported.

In this respect. this report concerns a new synthetic approach to a homoanisomycin analoguc 3. And we considered that intemediate 2 would be suitable for fumishing the desired stereochemistry and the extended side chain of the molecule. The compound 2 can be readily obtained via cisamidoalk lation of tartrimide. ${ }^{5}$

First, in order to set the side group. the allylie amide 2 prepared as described' was subjected to ozonoly sis and the dimethyl sulfide reductive work-up. Without purifeation, the corresponding aldehyde was treated with (p-methoxyphenvl) magnesium bromide in THF to vield an epimeric mixture of benzylic alcohols in 59% overall yield. The mixture was then reduced by triethy lsilane under trifluoroacetic acid treatment in THF. The reducing step under the acidic conditions afforded β-elimination product 6 in less than 10% as well as the desired compound 5 in 70% sield. Compound 6 was readily converted to 5 via catalytic hydrogenation.

The desired acetate funtionality at the 3 position could be installed via three step sequence. Firstly, the TBS protection groups were removed to provide a diol by tetrabutylammonimm fluoride (TBAF), and the sterically less hindered 4- α hydroxyl group of the diol was selectively protected with 1.2 cquiv. of $t e r$-butșldimethysilyl chloride in DMF at room temperature. Only single isomer was detected. Thirdly, acety-

Scheme 1.

Scheme 2. Reagents and conditions: (a) i. $\mathrm{O}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{McOH}$ ii. Methyl sulfide (b) (p-Methoxyphenyl) magnesium bromide. THF (c) $\mathrm{El}_{3} \mathrm{SiH} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$. TFA (d) Pd/5\%. H_{2} (c) TBAF. THF (I) TBSCl. imidarolc. DMF (g) $\mathrm{Ac}_{2} \mathrm{O}$. pyridine (h) TBAF. IHF (i) $\mathrm{BH}_{3}-\mathrm{DMS}$. THF. rt.
lation of the 3-hydroxyl group with acetic anhydride in py ridine provided the acetate 7 in overall sield of 52%. The final steps to the compound 3^{-}from 7 involved removal of the protecting silyl group with TBAF followed by reduction of the amide group with boranc-methyl sulfide complex, affording 3 in 34% overall yicld.
In summary: we described a concise synthetic pathway to N -benzylhomo-(-)-anisomycin, the first synthetic derivative of homoanisomycins, from the precursor 2. Further synthetic study of the related analogues is under progress and will be reported in due course.

(-)-Anisomycin
Acknowledgement. This paper was supported by NON DIRECTED RESEARCH FUND, Korea Rescarch Foundation. 1996.

References

I. Sobin. B. A.: Tanner. F. W.. Jr. J. Am. Chem. Soc. 1954. 76.4053.
2. Jiemnez. A.: Vazquez. D. In Antibioticy: Hahn. F. E..

Ed.; Springer Verlag: Berlin, 1979: vol 5(2). p 1.
3. Kang. S. H.: Choi H-W.J. Chem. Soc., Chem. Commum. 1996. 1522 and references therein.
4. Hall. S. S.: Loebenberg. D.: Schmarcher. D. P. J. Med. Chem. 1983, 26. 469.
5. Rytu. Y.: Kim. G. J. Org. Chem. 1995. 60. 103.
6. Baer. H.: Zamkanei. M. J. Org. Chem. $1988.53,4786$.
7. 3: $[\alpha]_{\mathrm{D}}{ }^{33}-45.4^{\circ}\left(\mathrm{c}=0.35 . \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$
$\left.\mathrm{CDCl}_{3}\right) \delta 7.4-7.2(\mathrm{~m} .5 \mathrm{H}) 7.1(\mathrm{~d}, J=9 \mathrm{~Hz} .2 \mathrm{H}) .6 .8(\mathrm{~d}$. $J=9 \mathrm{~Hz}, 2 \mathrm{H}$) .4 .8 (dd. $J=2.4 .2 .4 \mathrm{~Hz} .1 \mathrm{H}$). 4.1 (td. $J=6.3$. $2.4 \mathrm{~Hz} .1 \mathrm{H}) .4 .0(\mathrm{~d} . J=13 \mathrm{~Hz} .1 \mathrm{H}) .3 .8(\mathrm{~s} .3 \mathrm{H}) .3 .3(\mathrm{~d}$. $J=13 \mathrm{~Hz}, \mathrm{lH}$). 3.2 (dd. $J=8.6 .6 \mathrm{~Hz}$. IH) 2.9 (br. s. 1 H). $2.7(\mathrm{~m} . \mathrm{IH}) .2 .4-2.7(\mathrm{~m} .2 \mathrm{H}) .2 .2(\mathrm{~s} .3 \mathrm{H}) .2 .1(\mathrm{~m} .1 \mathrm{H})$. 1.9-2.1 (m. 2H). IR (CHCl_{3}) 3430, 3054. 2987, 2361. 1699. 1540, 1421. 1265.896.738 cm^{-1}, MS (FAB. glycerol) $370\left(\mathrm{M}^{+}\right)$

