

Scheme 4.
(Scheme 4).
Though Fries product 3 a would be mostly produced by intramolecular reaction, intermolecular reaction procedure must be considered as a trivial mechanism (Scheme 4).

We are trying to find the optimum reaction condition for
better yield of 3a by trivial mechanism and Fries reaction of phenyl acetate in the presence of deuterated phenol is under investigation to confirm trivial mechanism of photoFries reaction.

Acknowledgment. The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1997.

References

1. (a) Horspool, W. M.; Song, P. S. Organic Photochemistry and Photobiology; CRC Press: New York, U. S. A., 1995; p 570. Reference there in. (b) Suau, S.; Torres, G.; Valpuesta, M. Tetrahedron Lett. 1995, 1311. (c) Arai, T.; Tobita, S.; Shizuka, H. J. Am. Chem. Soc. 1995, 117, 3968. (d) Veglia, A. V.; Sanchez, A. M.; Rossi, R. H. J. Org. Chem. 1990, 55, 4083 and 1993, 58, 4941. (e) Suau, R.; Valpuesta, M.; Torres, G. Tetrahedron Lett. 1995, 1315. (f) Pitchumani, K.; Warrier, M.; Ramamurthy, V. J. Am. Chem. Soc. 1996, 9428. (g) Shine, H. J.; Subotkowski, W. J. Org. Chem. 1987, 52, 3815.
2. (a) Ito, T.; Miura, Y.; Kadokawa, T.; Hor, S.; Shimada, J.; Miyahara, T. Pharmacology \& Toxicology. 1991, 68, 220. (b) Zhi, J.; Nightingale, C. H. Pharmacology \& Toxicology. 1993, 73, 285.
3. (a) Khanna, R. N.; Singh, K. P.; Sharma, J. Organic Preparations and Procedures. International. 1992, 24, 687.
(b) Jimenez, M. C.; Leal, P.; Miranda, M. A.; Tormos, R. Chem. Comm., Chem. Soc. 1995, 2009.
4. (a) Trantnyek, P. G.; Hoigne, J. Environ. Sci. Technol. 1991, 25, 1596. (b) Ruppert, G.; Bauer, R.; Heisler, G.; Gopidas, K. R. J. Photochem. Photobiol. A: Chem. 1994, 77, 83.
5. The mole ratio of the ester to phenylphenol in the irradiation mixture was 4 to 1 .
6. Structural identification of the compounds was performed by comparison of NMR spectra with those of authentic samples.

Synthesis of (-)-Macronecine via Condensation Reaction between Malate Enolate and Imine

Deok-Chan Ha*, Jung-Bok Ahn, and Young-Eun Kwon
Department of Chemistry, Korea University, 5-1-2 Anam-Dong, Seoul 136-701, Korea

Pyrrolizidine alkaloids, found in the diverse plant species, have long been the targets of many synthetic efforts due to their interesting biological activities with relatively simple structures. ${ }^{1}$ Necine bases, having 1-hydroxymethyl group in the pyrrolizidine ring system, compose the majority of the pyrrolizidine alkaloids. Many synthetic methodologies have been developed for the efficient construction of this struc-
ture and, mostly, 2-pyrolidinones have served as useful intermediates for the synthesis of the polyhydroxylated pyrrolizidine alkaloids.

Recently, we reported the diastereoselective condensation between the enolate dianion of diethyl malate and nonenolizable imine and showed diastereoselectivity in the 2-pyrrolidinone formation could be controlled with addition of

HMPA. ${ }^{2}$ When the enolate dianion prepared from diethyl (S)-malate and two equivalents of $\mathrm{LiN}(\mathrm{TMS})_{2}$ was reacted with phenylpropargylidene-p-anisidine in THF-HMPA, the 2-pyrrolidinone 2 was formed in 34% yield with no diastereomer detected. Though the yield of this reaction was disappointingly low, this condensation provided stereoselectively the highly functionalized 2-pyrrolidinone in a single step. Synthesis of (- -macronecine (1), an enantiomer of natural (+)-macronecine, from the 2-pyrrolidinone 2 is described in this communication. ${ }^{3}$

1

2
(PMP-p-methoxyphenyl)
The ester 2 was selectively reduced with LiBH_{4} in diglyme and the resulting diol was bis-benzylated to give 3 . Oxidative dearylation of 3 with ceric ammonium nitrate (CAN) provided 4 in 89% yield. Reduction of the amide and triple bond moieties of 4 with excess of LAH in THF heated at reflux followed by carboxybenzylation of the resulting crude pyrolidine gave 5 in 95% combined yield. Ozonolysis of $5(84 \%)$ to aldehyde 6 followed by the Wittig reaction gave the unsaturated ester 7 as a $10: 1$ diastereomeric mixture. The epimerization occured during the Wittig reaction to give the trans ester 7 in 84% yield after SiO_{2} chromatography. Removal of the Cbz group and reduction of the unsaturated ester of 7 under catalytic hydrogenation provided an aminoester intermediate which was cyclized with AlMe_{3} to bicyclic amide 8 in 87% combined yield. Hydrogenolysis of the benzyl ethers (95\%) of 8 followed by LAH reduction (70%) gave (-)-macronecine (1) $\left([\alpha]_{\mathrm{D}}{ }^{20}=-41.0, \mathrm{c} 0.19, \mathrm{EtOH}\right)$ having the identical spectral data (IR, mass, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) with those reported. ${ }^{4}$

Acknowledgment. This research was financially supported by the Basic Science Research Institute Program (BSRI-97-3406) and the Organic Chemistry Research Cen-ter-KOSEF.

References

1. (a) Ikeda, M.; Sato, T.; Ishibashi, H. Heterocycles 1988, 27, 1465. (b) Robins, D. J. Nat. Prod. Rep. 1994, 11,

Reagents and conditions. a. LiBH_{4} (4 equiv), diglyme, $0^{\circ} \mathrm{C}$, rt , $20 \mathrm{~h}, 90 \%$; b. NaH (2.5 equiv), BnBr (2.5 equiv), DMF, 86%; c. CAN (3 equiv), $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}\left(4: 1\right.$), $-23^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 89 \%$; d. i) LAH (4 equiv), THF, reflux, 3 h ; ii) $\mathrm{CbzCl}\left(1.3\right.$ equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv), cat. DMAP, THF, rt, $12 \mathrm{~h}, 95 \%$; e. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; $\mathrm{CH}_{3} \mathrm{SCH}_{3}, 84 \%$; f. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{THF}, \mathrm{rt}, \mathbf{3 6 h}, 84 \%$; g. i) $\mathbf{1 0 \%}$ Pd-C, H_{2} (1 atm), $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{rt}, 1 \mathrm{~h}$; ii) AlMe ${ }_{3}$, toluene, $0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 87%; h. $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{CH}_{3} \mathrm{OH}, \mathrm{rt}, 40 \mathrm{~h}, 95 \%$; i. LAH (3 equiv), THF, reflux, $10 \mathrm{~h}, \mathbf{7 0 \%}$.
613. (c) Robins, D. J. Nat. Prod. Rep. 1995, 12, 413. (d) Liddell, J. R. Nat. Prod. Rep. 1996, 13, 187.
2. Ha, D.-C.; Yun, K.-S.; Park, H.-S.; Choung, W.-K.; Kwon, Y.-E. Tetrahedron Lett. 1995, 36, 8445.
3. Danilova, A.; Utkin, L.; Massagetov, P. S. J. Gen. Chem. USSR 1955, 25, 797.
4. (a) Aasen, A. J.; Culvenor, C. C. J. J. Org. Chem. 1969, 34, 4143. (b) Ito, H.; Ekeuchi, Y.; Taguchi, T.; Hanzawa, Y. J. Am. Chem. Soc. 1994, 116, 5469.

