A Note on Fuzzy S-mappings

Won Keun Min

Department of Mathematics Kangwon National University

ABSTRACT

We introduce the concepts of fuzzy s-continuous mappings, s-open mappings, and s-closed mappings. We investigate several properties of such mappings. In particular, we study the relation between fuzzy s-continuous mappings and fuzzy s-open mappings (s-closed mappings).

1. Introduction

Fuzzy topological spaces were first introduced in the literature by Chang [1] who studied the basic concepts including fuzzy continuous mappings and compactness. And fuzzy topological spaces are a very natural generalization of topological spaces.

In 1983, A. S. Mashhour. et al. [3] introduced supratopological spaces and studied s-continuous mappings and s*-continuous mappings. In 1987, M. E. Abd El-Monsef. et al. [2] introduced the fuzzy supratopological spaces and studied fuzzy supracontinuous functions and characterized the basic concepts. Also fuzzy supratopological spaces are a generalization of supratopological spaces. In this paper, we introduce the concepts of fuzzy s-continuous mappings, s-open mappings, and s-closed mappings. And we investigate several properties of such mappings. In particular, we introduce the relation between fuzzy s-continuous mappings and fuzzy s-open mappings (s-closed mappings).

Let X be a set and let I=[0,1]. Let I^X denote the set of all mappings $a:X \rightarrow I$. A number of I^X is called a *fuzzy* set of X. And unions and intersections of fuzzy sets are denoted by \vee and \wedge respectively and defined by

$$\forall a_i = \sup \{a_i(x) | i \in J \text{ and } x \in X\},\$$

 $\land a_i = \inf \{a_i(x) | i \in J \text{ and } x \in X\}.$

Definition 1.1. [1] A fuzzy topology T on X is a subfamily of I^X such that

- (1) $0, 1 \in T$
- (2) if $a, b \in T$, then $a \land b \in T$
- (3) if $a_i \in T$ for all $i \in J$, then $\forall a_i \in T$

The pair (X, T) is called a fuzzy topological spaces (fts, for short). Members of T are called fuzzy open sets in (X, T) and completement of a fuzzy open set is called a fuzzy closed set.

Definition 1.2. [5]. Let f be a mapping from a set X into a set Y. Let a and b be respectively the fuzzy sets of X and Y. Then f(a) is a fuzzy set in Y, defined by

$$f(a)(y) = \begin{cases} \sup a(z) & \text{if } f^{-1}(y) \neq \emptyset , y \in Y, \\ 0 & \text{otherwise }, \end{cases}$$

and $f^{-1}(b)$ is a fuzzy set in X, defined by $f^{-1}(b)(x)=b(f(x))$, for each $x \in X$.

Definition 1.3. [3]. A subfamily T^* of I^X is called a fuzzy supratopology on X if

- (1) $1 \in T^*$
- (2) if $a_i \in T^*$, $i \in J$, then, $\forall a_i \in T^*$.

The pair (X, T^*) is called a fuzzy supratopological space(fsts. for short) The elements of T^* are called fuzzy supra-open sets in (X, T^*) . And a fuzzy set a is supra-closed if and only if co(a)=1-a is a fuzzy supra-open set.

Definition 1.4. [3]. The supra closure of a fuzzy set a is denoted by scl(a), and given by

 $scl(a) = \land \{ s \mid s \text{ is a fuzzy supra-closed set and } a \leq s \}.$

The supra interior of a fuzzy set a is denoted by si(a) and given by

 $si(a) = \land \{ t \mid t \text{ is a fuzzy supra-open set and } t \leq a \}.$

2. Fuzzy s-continuous mappings

Definition 2.1. Let (X, T) be a fuzzy topological space and T^* be a fuzzy supratopology on X. We call T^* an associated fuzzy supratopology with T if $T \subseteq T^*$.

Definition 2.2. [2]. Let $f:(X, T^*) \rightarrow (Y, S^*)$ be a fuzzy mapping between two fuzzy supratopological spaces.

- (1) f is called a fuzzy supracontinuous mapping if $f^{-1}(S^*) \subseteq T^*$
- (2) f is called a fuzzy supraopen mapping if $f(T^*) \subseteq S^*$.

Definition 2.3. Let (X, T) and (Y, S) be fuzzy topological spaces and T^* be an associated fuzzy supratopology with T. A mapping $f: X \longrightarrow Y$ is said to be *fuzzy s-continuous* if for each fuzzy open set a in Y, $f^{-1}(a)$ is a fuzzy supra-open set in (X, T^*) .

We recall that a fuzzy set h in a fts (X, T) is a neighborhood of a fuzzy set f in X if and only if there is $g \in T$ such that $f \le g \le h$.

Theorem 2.4. Let (X, T) and (Y, S) be fuzzy topological spaces and let T^* be an associated fuzzy supratopology with T. If f is a mapping from X into Y, then the followings are equivalent:

- (1) f is fuzzy s-continuous.
- (2) For each fuzzy closed set a in Y, $f^{-1}(a)$ is a fuzzy supra-closed set in (X, T^*) .
 - (3) $scl(f^{-1}(a)) \le f^{-1}(cl(a))$ for every fuzzy set a in Y.
 - (4) $f(scl(a)) \le cl(f(a))$ for every fuzzy set a in X.
 - (5) $f^{-1}(int(b)) \le si(f^{-1}(b))$ for every fuzzy set b in Y.
- (6) For each fuzzy set a in X and each neighborhood b of f(a), there is a supra neighborhood c of a such that $f(c) \le b$.

Proof. (1) \Rightarrow (2). Let a be fuzzy closed set in Y. Since f is fuzzy s-continuous, $f^{-1}(1-a)=1-f^{-1}(a)$ is a fuzzy supra-open in X. Therefore $f^{-1}(a)$ is a fuzzy supra-closed set in X.

(2) \Rightarrow (3). Since cl(a) is fuzzy closed for every fuzzy set a in Y, $f^{-1}(cl(a))$ is a fuzzy supra-closed set. Therefore,

$$f^{-1}(cl(a))=scl(f^{-1}cl(a)) \geq scl(f^{-1}(a)).$$

- $(3) \Rightarrow (4)$. Let a be a fuzzy set in X and let f(a)=b. Then $f^{-1}(cl(b)) \geq scl(f^{-1}(b))$. So $f^{-1}(cl(a)) \geq scl(f^{-1}f(a)) \geq scl(a)$, and hence $cl(f(a)) \geq f(scl(a))$.
- (4) \Rightarrow (2). Let b be a fuzzy closed set in Y and $a=f^{-1}(b)$. Then $f(scl(a)) \le cl(f(a))=cl(f(f^{-1}(b))) \le cl(b)=b$. Since $scl(a) \le f^{-1}(f(scl(a))) \le f^{-1}(b)=a$, a is a fuzzy supra-closed.
 - $(2) \Rightarrow (1)$. It is obvious.
- $(1) \Rightarrow (5)$. Let b be a fuzzy subset in Y. Since f^{-1} (int(b)) is a fuzzy supra-open set in X, f^{-1} (int(b)) $\leq si(f^{-1}$ (int(b)) $\leq si(f^{-1}(b))$.
- $(5) \Rightarrow (1)$. Let a be a fuzzy open in Y. Since $f^{-1}(a) \le si(f^{-1}(a)) \le f^{-1}(a)$, $f^{-1}(a)$ is a fuzzy supra-open set.
- $(6) \Rightarrow (1)$. Let b be any fuzzy open set in Y and let $f^{-1}(b)=a$. Then b is a neighborhood of $f(a)=f(f^{-1}(b))$. There exists a supra neighborhood c of $a=f^{-1}(b)$ such that $f(c) \leq b$. Thus $c \leq f^{-1} f(c) \leq f^{-1}(b)$. Therefore, $f^{-1}(b)$ is a supra neighborhood of $f^{-1}(b)$. And $f^{-1}(b)$ is a fuzzy supra-open set in X by [3, Theorem 2.2].
 - $(1) \Rightarrow (6)$. It is obvious.

Remark. Every fuzzy continuous mapping is fuzzy s-continuous. But the converse of this implication is not true, as following example shows.

Example 2.1. Let a_1 , a_2 , and a_3 be fuzzy sets of X = I defined as

$$a_1(x) = \begin{cases} 0, & \text{if } 0 \le x \le \frac{1}{2}, \\ 2x - 1, & \text{if } \frac{1}{2} \le x \le 1; \end{cases}$$

$$a_{2}(x) = \begin{cases} 1, & \text{if } 0 \le x \le \frac{1}{4}, \\ -4x + 2, & \text{if } \frac{1}{2} \le x \le 1; \\ 0, & \text{if } \frac{1}{2} \le x \le 1; \end{cases}$$

$$a_3(x) = \begin{cases} 1, & \text{if } 0 \le x \le \frac{1}{2}, \\ -2x + 2, & \text{if } \frac{1}{2} \le x \le 1; \end{cases}$$

Consider the fuzzy topology $T = \{0, a_1, a_2, a_1 \lor a_2, 1\}$ and an associated fuzzy supratopology $T^* = \{0, a_1, a_2, a_3, a_1 \lor a_2, a_1 \lor a_3, 1\}$. Let the mapping $g: X \to X$ be defined by g(x) = (1/2)x. Clearly, we have $g^{-1}(0) = 0$, $g^{-1}(1) = 1$, $g^{-1}(a_1 \lor a_2) = a_3$, $g^{-1}(a_2) = a_3$ and $g^{-1}(a_1) = 0$. The fuzzy set a_3 is fuzzy supra-open in (X, T^*) but it is not fuzzy open in (X, T). Hence the mapping g is fuzzy s-cintinuous but not fuzzy continuous.

Remark. In general, the composition of two fuzzy s-continuous mappings need not be fuzzy s-continuous.

Example 2.2. Let X = I. Consider the fuzzy sets

$$a(x) = \begin{cases} 1, & \text{if } 0 \le x < \frac{1}{3}, \\ \frac{1}{2}, & \text{if } \frac{1}{3} \le x < \frac{2}{3}, \\ 0, & \text{if } \frac{2}{3} \le x < 1; \end{cases}$$

$$b(x) = \frac{1}{2}$$
, if $0 \le x \le 1$;

$$c(x) = \frac{1}{3}$$
, if $0 \le x \le 1$.

Let $T_1=\{0, a, 1\}$ and $T_1^*=\{0, a, b, a \lor b, 1\}$. Let $T_2=\{0, c, 1\}$ and $T_2^*=\{0, a, c, a \lor c, 1\}$. Let $f:(X, T_1) \to (X, T_1)$ be the mapping defined by f(x)=(x+1)/3. Let $g:(X, T_2) \to (X, T_1)$ be the mapping defined by g(x)=(1/3)x. Clearly, f and g are fuzzy s-continuous. But $f \circ g$ is not fuzzy s-continuous, since a is a fuzzy open set in (X, T_1) but $(f \circ g)^{-1}(a) = b$ is not fuzzy supra-open in T_2^* .

Theorem 2.5. If a mapping $f: (X, T_1) \rightarrow (Y, T_2)$ is fuzzy s-continuous and a mapping $g: (Y, T_2) \rightarrow (Z, T_3)$ is fuzzy continuous, then $g \circ f$ is fuzzy s-continuous.

Proof. It is clear by the definitions of fuzzy s-continuous mappings and fuzzy continuous mappings.

Theorem 2.6. Let (X, T) and (Y, S) be two fuzzy topological spaces, T^* and S^* be two associated fuzzy supratopologies with T and S, respectively. A mapping $f: X \rightarrow Y$ is fuzzy continuous if it has one of

the following properties:

- (1) $f^{-1}(si(a)) \le int(f^{-1}(a))$ for each fuzzy set a in (Y, S).
- (2) $cl(f^{-1}(a)) \le f^{-1}$ (scl(a)) for each fuzzy set a in (Y, S).
 - (3) $f(cl(b)) \le scl(f(b))$ for each fuzzy set b in (X, T).

Proof. If the condition (2) is satisfied, let b be a fuzzy closed set in Y, then $cl(f^{-1}(b)) \le f^{-1}(scl(b)) = f^{-1}(b)$. Therefore $f^{-1}(b)$ is a fuzzy closed set in X. If the condition (3) is satisfied, let b be a fuzzy set in Y, then $f^{-1}(b)$ is a fuzzy set in X and $f(cl(f^{-1}(b))) \le scl(f(f^{-1}(b)))$. Thus $cl(f^{-1}(b)) \le f^{-1}(scl(b))$.

Therefore, since the condition (2) in satisfied, f is continuous.

In case (1), we can prove similarly.

Lemma [4]. Let $g: X \rightarrow X \times Y$ be the graph of a mapping $f: X \rightarrow Y$. Then, if a is a fuzzy set in X and b is a fuzzy set in Y, $g^{-1}(a \times b) = a \wedge f^{-1}(b)$.

Theorem 2.7. Let $f:(X, T) \rightarrow (Y, S)$ be a mapping and T^* be an associated supratopology with T. Let $g: X \times Y$, given by g(x) = (x, f(x)) be its graph mapping. If g is fuzzy s-continuous, then f is fuzzy s-continuous.

Proof. Suppose that g is a fuzzy s-continuous and a is a fuzzy open set in (Y, S). Then $f^{-1}(a) = 1 \land f^{-1}(a)$: $g^{-1}(1 \times a)$. Therefore, $f^{-1}(a)$ is a fuzzy supra-open set in (X, T^*) .

Definition 2.8. [3]. Let (X, T_1) and (Y, T_2) be fuzzy topological spaces and T_1^* and T_2^* be two associated fuzzy supratopologies with T_1 and T_2 , respectively. Let $f: (X, T_1) \rightarrow (Y, T_2)$ be a mapping. Then f is said to be fuzzy supracontinuous if for each fuzzy supraopen set a in (Y, T_2^*) , $f^{-1}(a)$ is a fuzzy supra-open set in (X, T_1^*) .

Remark. Every fuzzy supracontinuous mappings is fuzzy s-continuous, but the converse is not true. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two mappings. If f is a fuzzy supra-continuous and g is fuzzy s-continuous, then $g \circ f: X \rightarrow Z$ is fuzzy s-continuous.

3. Fuzzy s-open mappings and Fuzzy s-closed mappings.

Definition 3.1. A mapping $f:(X, T) \rightarrow (Y, S)$ is said to be *fuzzy s-open* (*fuzzy s-closed*, respectively) if the image of each fuzzy open (fuzzy closed, repectively) set in (X, T) is fuzzy supra-open (fuzzy supra-closed, respectively) in (Y, S^*) .

Now we recall that a mapping $f:(X, T) \rightarrow (Y, S)$ is said to be *fuzzy open* if $f(T) \subseteq S$. Clearly, every fuzzy open (fuzzy closed) mapping is a fuzzy s-open mapping (fuzzy s-closed mapping). And every fuzzy supraopen mapping is a fuzzy s-open mapping. But the converses of these implications are not true, which are from the following examples.

Example. Let X = I. Consider the fuzzy sets;

$$a(x) = \begin{cases} 2x, & \text{if } 0 \le x \le \frac{1}{2}, \\ \frac{1}{2}, & \text{if } \frac{1}{2} < x \le 1; \end{cases}$$

$$b(x) = \begin{cases} \frac{1}{2}, & \text{if } 0 \le x < \frac{1}{4}, \\ 2x, & \text{if } \frac{1}{4} \le x \le \frac{1}{2}, \\ 0, & \text{if } \frac{1}{2} < x \le 1; \end{cases}$$

$$c(x) = \begin{cases} 1, & \text{if } 0 \le x \le \frac{1}{2}, \\ 0, & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$

(1). Let $T=\{0, a, 1\}$ be a fuzzy topology on X and $T^*=\{0, a, b, c, a \lor c, a \lor b, 1\}$ be an associated fuzzy supratopology with T. Let $f:(X, T) \rightarrow (X, T)$ be the mapping defined by

$$f(x) = \begin{cases} x, & \text{if } 0 \le x \le \frac{1}{2}, \\ 1 - x, & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$

Now we show that f(a) = b.

Case 1. Let
$$0 \le x < \frac{1}{4}$$
 and $y \in f^{-1}(x)$. Then either $0 \le y < \frac{1}{4}$ or $\frac{3}{4} < y \le 1$. Since

$$a(y) = \begin{cases} 2y, & \text{if } 0 \le y < \frac{1}{4}, \\ \frac{1}{2}, & \text{if } \frac{3}{4} < y \le 1, \end{cases}$$

and $2y \le \frac{1}{2}$ for $y \in f^{-1}(x)$. Therefore $f(a)(y) = \frac{1}{2}$ if $0 \le x < \frac{1}{4}$.

Case 2. Let $\frac{1}{4} \le x \le \frac{1}{2}$ and y in $f^{-1}(x)$. Then either $\frac{1}{4} \le y \le \frac{1}{2}$ or $\frac{1}{2} < y \le \frac{3}{4}$. Thus

$$a(y) = \begin{cases} 2y, & \text{if } \frac{1}{4} \le y \le \frac{1}{2}, \\ \frac{1}{2}, & \text{if } \frac{1}{2} < y \le \frac{3}{4}. \end{cases}$$

Since $\frac{1}{2} \le 2y$ and y = x for each $\frac{1}{4} \le y \le \frac{1}{2}$, we obtain f(a)(y) = 2x if $\frac{1}{4} \le x \le \frac{1}{2}$.

Case 3. Let $\frac{1}{2} < x \le 1$. Since $f^{-1}(x)$ is empty set for $\frac{1}{2} < x \le 1$, f(a) = 0 if $\frac{1}{2} < x \le 1$.

Therefore by the above facts, we obtain f(a) = b. And similarly, we have f(1) = c. Since b and c are two fuzzy supra-open sets in T^* , f is a fuzzy s-open mapping. But since b and c are not fuzzy open in T, f is not a fuzzy open mapping.

(2). Let $T = \{0, b, 1\}$ be a fuzzy topology on X. Let $T^* = \{0, a, b, a \lor b, 1\}$ and $S^* = \{0, b, c, 1\}$ are associated fuzzy supratopologies with T. Consider the fuzzy mapping $f: (X, T^*) \rightarrow (X, S^*)$ defined by

$$f(x) = \begin{cases} x, & \text{if } 0 \le x \frac{1}{2}, \\ \frac{1}{2}, & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$

We obtain f(b) = b and f(1) = c. Thus f is a fuzzy sopen mapping. But for a fuzzy supra-open set a in T^* , f(a) is not fuzzy supra-open in S^* . Consequently, f is not a fuzzy supraopen mapping.

Theorem 3.2. Let $f: (X, T_1) \rightarrow (Y, T_2)$ be a mapping. Then the followings are equivalent:

- (1) f is a fuzzy s-open mapping.
- (2) $f(int(a)) \le si(f(a))$ for each fuzzy set a in X.

Proof. (1) \Rightarrow (2). Since int(a) \leq a, we have $f(int(a)) \leq f(a)$. By hypothesis, f(int(a)) is supra-open in f(a). And since si(f(a)) is the largest fuzzy supra-open set in f(a), we obtain $f(int(a)) \leq si(f(a))$.

 $(2) \Rightarrow (1)$. Let a be a fuzzy open in X. We have si $(f(a)) \leq f(a)$. By the hypothesis, $f(a) \leq si(f(a))$. Thus f(a) is a fuzzy supra-open set in Y.

Theorem 3.3. Let $f:(X, T_1) \rightarrow (Y, T_2)$ be a mapping. Then f is fuzzy s-closed if and only if $scl(f(a)) \leq f(cl(a))$ for each a in X.

Proof. If f is fuzzy s-closed mapping, then f(cl(a)) is a fuzzy supra-closed set in Y. And we have $f(a) \le f(cl(a))$, thus $scl(f(a)) \le f(cl(a))$.

Conversely, let a be a fuzzy closed set. Then $f(a) \le scl(f(a)) \le f(cl(a)) = f(a)$, thus f(a) is a fuzzy supraclosed set in Y.

Theorem 3.4. Let $f: (X, T_1) \rightarrow (Y, T_2)$ and $g: (Y, T_2) \rightarrow (Z, T_3)$ be two mappings.

- (1) If $g \circ f$ is fuzzy s-open and f is fuzzy continuous surjective, then g is also fuzzy s-open.
- (2) If $g \circ f$ is fuzzy open mapping and g is fuzzy s-continuous injective, then f is fuzzy s-open.

Proof. (1). Let a be a fuzzy open set in Y. Then $f^{-1}(a)$ is fuzzy open in X. Since $(g \circ f)$ is fuzzy s-open, $(g \circ f)$ $(f^{-1}(a))$ is a supra-open set in Z. And $(g \circ f)(a \circ f) = g(a)$, since f is surjective. Therefore the mapping g is fuzzy s-open.

(2). Let a be a fuzzy open set in X. Then $g \circ f(a) = g$ (f(a)) is fuzzy open in Z. Since g is fuzzy s-continuous injective, $g^{-1}(g(f(a))) = g(f(a)) \circ g = f(a)$ is a fuzzy supra-open set. Hence, f is fuzzy s-open.

Theorem 3.5. Let (X, T_1) and (Y, T_2) be two fuzzy topological spaces. If $f: (X, T_1) \rightarrow (Y, T_2)$ is a bijective

mapping, then following statements are equivalent:

- (1) f is a fuzzy s-open mapping.
- (2) f is a fuzzy s-closed mapping.
- (3) f^{-1} is fuzzy s-continuous.

Proof. (1) \Rightarrow (2). Let a be a fuzzy closed set in X. Then f(1-a) = 1-f(a) is fuzzy supra-open in Y, since f is a fuzzy s-open mapping. Hence f(a) is fuzzy supra-closed in Y.

 $(2) \Rightarrow (3)$. Let a be a fuzzy closed set in X. We have $(f^{-1})^{-1}(a) = f(a)$. Since f is fuzzy s-closed mapping, f(a) is fuzzy supra-closed in Y. Therefore, f is fuzzy s-continuous.

(3) \Rightarrow (1). Let a be a fuzzy open set in X. Since f^{-1} is fuzzy s-continuous, $(f^{-1})^{-1}(a) = f(a)$ is fuzzy supraopen in Y. Hence f is a fuzzy s-open mapping.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24, 182-190, 1968.
- [2] M. E. Abd El-Monsef and A. E. Ramadan, On fuzzy supratopological spaces, *Indian J. Pure. Appl. Math.* 18(4), 322-329, 1987.
- [3] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supratopological spaces, *Indian. J. Pure. Appl. Math.* 14(4), 502-510, 1983.
- [4] M. K. Singal and A. R. Singal, Fuzzy alpha-sets and alpha-continuous maps, Fuzzy Sets and Systems 48, 383-390, 1992.
- [5] L. A. Zadeh. Fuzzy sets, Inform. and Control 8, 338-353, 1965.

민원근(Won Keun Min)

1981년 : 강원대학교 사범대학 수학과 (이학사)

1983년 : 고려대학교 대학원 수학과(이 학석사)

1987년 : 고려대학교 대학원 수학과(이 학박사)

1988년 3월~현재 : 강원대학교 자연과학대학 수학과 교수 관심분야 : Fuzzy Topology, Topology