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Abstract

We present simple block methods for blind maximal ratio combining (MRC) based on a maximum
likelihood (ML) principle and finite alphabet properties (FAP) inherent in digital communication
systems. The methods can provide accurate estimates of channel parameters even with a small subset
of data, thus realizing nearly perfect combining. The channel parameters of diversity branches and the
data sequence are estimated simultaneously by using an alternating projection technique. Two
different methods, that is, (1) Joint combining and data sequence estimation (JC-DSE) method and (2)
Pre-combining and blind phase estimation (PC-BPE) method are presented. Efficient initialization
schemes that can assure the convergence to the global optimum are also presented. Simulation results
demonstrate the performance of the two methods on the symbol error rate (SER) and the estimated
accuracy of the channel parameters.

I. INTRODUCTION

For coherent communication systems with
MRC is the
optimal linear combining technique, in which the

independent diversity branches,

perfect knowledge on the channel parameters of
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respective branches is required“]'m. Accurate
estimates of the channel parameters can be easily
obtained by invoking adaptive techniques based
on decision-directed methods with training
preamble and pilot-symbol assisted methods "*! ™!
61, However, the use of pilot signals or training
sequences has a drawback of requiring a
dedicated channel and/or an additional bandwidth,
thus reducing throughput efficiency of the
network. In addition, for systems of requiring the
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dynamic selection of combining branches [71-110]

such direct- spread-spectrum

(DS/SS) systems, these adaptive techniques using

as sequernce
the pilot signal cannot be used directly any more
since they must be reinitialized after every
selection of a new set of combining branches. The
number of dominant combining branches even
may be varied.

In this context of dynamic selection and
combining, dominant combining branches can be
determined by a power-monitoring method with a
threshold, and then MRC is applied to the selected
branches only in order to maximize a signal-to-
noise ratio (SNR) at the combiner output. This
problem of the dynamic selection and combining
can be solved indirectly by combining the signals
from all the possible branches as in (3},
this huge

proportional to the number of all the possible

However, requires computations

and its

performance may be even degraded at lower SNR

branches at every symbol instant,
values due to the destructive contributions of

noisy branches. Therefore, a class of blind
methods that can provide reliable estimates of the
channel parameters for the optimal combining,
irrespective of dynamic selection of combining
branches, is desirable.

In this paper, we propose two blind MRC
methods based on an ML principle and FAP
inherent in digital communication systems[m,
which can provide accurate estimates of the
channel parameters even with a small subset of
data. Without the

proposed methods estimate simultaneously the

invoking training models,

data sequence and the channel parameters by
using an alternating projection technique. Two
different methods are presented as follows: (1)
JC-DSE method estimates iteratively the channel
parameters and the data sequence from a finite
observation by using the alternating projection
technique; (2) PC-BPE method firstly
the diversity branches
sufficiently good of

parameters up to an unknown phase rotation, and

and
combines by using
estimates the channel
then estimates iteratively the unknown phase and

the data sequence from the combined signal by

o
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the alternating technique (

Respective initialization schemes for these two

projection

methods are presented to assure the convergence
to the global optimum.

Io0. PROBLEM FORMULATION

Consider a baseband digital communication
system with M diversity branches. A matched-
filtered output of the
expressed as

i-th branch can be

XM =aesm v, j-1 -, M, (1)

where xi(n), vi{n), a;, and @ are a received signal,
an additive white Gaussian noise (AWGN) with
zero mean and variance of 0‘2, a gain, and a
phase at the i-th branch, respectively; s(n) is a
transmitted data sequence which is commonly
carried over all the diversity branches. In what
follows, we assume independent identically
distributed (i.i.d.) noises at all the branches. In
compact form,

x(n)=s(n)c+ V(n),

2)

where v(n)=[xi(n), - xp(M)], v@)=[vi(n), -, vm(n)],
and v=[e1, **,cm], with channel response, ¢ for the
i~th branch defined as ¢ = &€’ Collecting data

over N symbol periods, we can rewrite (2) in
matrix form

X=s5¢c+V, (3)

where X=[x(1),-- x(N)]"], V=[v(1),* v(\)1"], and
v=[s(1),",s(\)]"] with the superscript T denoting
transpose.

Blind MRC problem the joint
estimation of the channel parameters ¢ and the

requires

data sequence s from the finite observation X. In
this paper, we consider only symmetric QAM
systems such as 4-QAM and 16-QAM, although
the proposed methods can be extended directly to
nonsymmetric modulations. Hence, all the phase
estimates v={ @1, ,0m], obtained from any
blind estimation methods may suffer the phase

(1464)
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ambiguity of /2.

m. MAXIMUM LIKELIHOOD
ESTIMATION

Using (3) and from the AWGN assumption, we
can obtain the log likelihood function as

N
In L = const — MN log o —%Zu x(n)—s(n)-cl?
o n=1 . (4)

Neglecting constant terms, the problem of
maximizing L with respect to the unknown
parameters ¢ and s(n), n = 1, -+, N reduces to the
following least square (LS) problem:

arg ngﬂ IX—s-cf , 5)

where the subscript F denotes the Frobenious
norm of a matrix. Since elements of s in digital
communication systems are constrained to finite
alphabets, this problem is a nonlinear separable
optimization problem with mixed discrete and
continuous variables. This problem can be solved
in two steps as follows: Minimizing (5) with
respect to ¢ with s fixed, since ¢ is unconstrained,
we obtain

c=(s*s)'s*X (6)

where the asterisk denotes complex conjugate
transpose. We can then obtain the ML estimate of
s by substituting (6) back into (5) as

arg. minll(I—ss*(s*s) )X (7

Then, the channel parameters c¢ are obtained by
substituting s obtained from (7) back into (6).

The global minimization of (7) can be obtained
by exhaustive two~dimensional search. However,
the number of possible s vectors grows
exponentially with both N and the number of
alphabets. This exhaustive search cannot be used
even for modest size problems. Hence, a class of
iterative methods is desirable. In the subsequent
two sections, we deal with iterative methods that
give much lower computational complexity.

(1465)
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IV. JOINT COMBINING AND DATA
SEQUENCE ESTIMATION (JC-DSE)
METHOD

We propose a block method that estimates
simultaneously the channel parameters and the
data sequence by using finite alphabet properties
and an alternating projection technique. We begin
by assuming an initial estimate ¢ of the channel
parameters. An unconstrained LS estimate of data
sequence, S, is obtained by minimizing (5) with

respect to s, with ¢ fixed as
suc= XeF(ee¥) ™

The constrained estimate s is obtained by

projecting s, onto finite alphabet space as

§= proj(;.,c) = proj(Xé* (éé*)’l), €]

where proj( +) denotes the projection of the
unconstrained estimate onto finite alphabet space
associated with modulation schemes. Then, a
better estimate of ¢ is obtained by substituting
s of (8 into (6). We
continue this process until ¢ and/or s converge.

the sequence estimate

This method may not converge to the global
optimum with an arbitrary initial estimate Gc.
Hence, this requires an initialization scheme that
can assure the convergence to the global
optimum.

We now develop an efficient initialization
scheme by noting that a good estimate of the
channel parameters ¢ can be obtained by
eliminating the effect of the data sequence from
X. The effect of the data sequence can be easily
eliminated by constructing the covariance matrix
as

Ry = E{X*X} = pc*c+0’l (9)

where E{-} denotes the statistical expectation of
{-} and p is a real constant proportional to the
signal power. From (9), we see that ¢ can be
completely  determined

from the principal



eigenvector of Rxx up to a phase rotation. That is,
v can be expressed as
¢ =ac,

el
’

(10)
where @, v and ¢ are a normalizing real
principal
eigenvector of Rxx, and an unknown phase after

constant, a phase-normalized
phase normalization, respectively. In this paper,

we normalize ¢}, so that its modulus is equal to

unity, "epIf =1(amplitude normalization), and so
that the strongest element defined as cp{imax)With
Imax = argm?x[l cp(i=1, ... M] has zero-phase
(phase normalization). In practice, a good estimate
of ¢ up to a phase rotation can be obtained from
the principal eigenvector of the sample covariance
matrix instead of the covariance matrix as

R§x=%~X*X=—Il\7(s*s~c*c+V*V)' (1)
From (11), note that IN-(s's) stands for an
averaged signal power over N symbol periods.

For an initial selection of @, we can assume,
without loss of generality, that the gain of the
strongest branch is equal to unity. In this case, an
appropriate value of @ is chosen as

Qo =1/c,(i,,) (12)

Alternatively, without any assumption on branch
gains, the normalizing constant can be estimated
by using the maximum eigenvalue of R% (ie.,
Amax) a8

(13)

where PF denotes the power contribution factor
associated with modulation schemes.

Given the exact c’, the blind MRC requires the
joint problem of obtaining
simultaneously the phase rotation ¢ * and the data
sequence s from the finite observation X. Hence,
this can be solved in a similar way as in the blind

phase estimation method with multiple initial
[121

estimation

estimates and the post selection scheme
Hence, assuming a good estimate of channel
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parameters, ¢, , we choose a set of initial

. o b . . .
estimates, {€o0=¢Cr€"" =] . ndiv}, corresponding

to the ndiv different phases, {®i0,i = 1, ndiv ).
In this case, the set of initial phases must be
sufficient to assure the convergence to the global
optimum. After respective estimations of pairs of
(c,s) with all the ndiv initial estimates, the pair
that minimizes the LS criterion of (5), ( ¢, §) is
decided as the final estimates of (c, s). We
summarize the JC-DSE method as follows:

Iterative JC-DSE MRC Method with Multiple
Initial Estimates:

1. Compute CA; = pe-vec(Rxy) = pe - vec(X*X)
2. Determine (;to from (12) or (13).
3. For i=Lndiv
3a) 9, ={(-05)/ndiv}: (x/2), k=0
3b) o = €%
300k=k+1
. 8, = proj(Xej, -(e,,€/,)™)
. €y = (8,80 78, X

3.d) Repeat 3.c) until (CiuSix) =(CipsSip)
3€) i (€,8)=(c,,.5,)

End;

4 (¢,8) = argminlX—s;- el | =1/, div.

(i 8i)
In the above description of the method, pe-vec(-)
denotes the principal eigenvector of (+).

Starting with each initial estimate, this method
converges very rapidly to an extreme point. This
requires about O((2M+1)N) complex multi-
plications at every iteration, thus the
computational complexity for all the iteration
processes about  ndiv*nicnv*O((2M+1)N)
complex multiplications for

is
estimating ndiv
possible candidates, assuming nicnv iterations to
convergence. Also, this method requires (MN+ e
M) complex multiplications by using the power
method '*) with iterations for the computation of
CA; , and ndiv'(1.5MN) complex multiplications for
the post selection.
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V. PRE-COMBINING AND BLIND PHASE
ESTIMATION (PC-BPE) METHOD

In the previous section, we have described that
given the exact c), the blind MRC requires the
joint estimation problem of obtaining simul-
taneously the phase rotation ¢” and the data
sequence s from the finite observation X. In the
JC-DSE method, both the amplitude and phase of
each branch have been updated simultaneously at
every iteration, thus providing optimum channel
parameters. In this section, we develop a much
simpler method that combines firstly the diversity
branches by using, the good estimate of the
combining vector, ¢, instead of the true com-
bining vector, and then estimates iteratively the
phase offset and the data sequence from the
combined signal by using the FAP and the
alternating projection techniquem] . We begin by

assuming the exact combining vector cb.
Substituting (10) into (3), we get
X=S‘cp'a'e-j¢+v. (14)

Noting € ’=1 we get the combined signal Xc
as

XC=Xc;=s-ac+Vc (15)

-j¢ - . . .
,and Y =V¢, which is also a
white Gaussian noise vector with zero mean and

where &.=Q-¢€

covariance of 0’1,

the blind MRC requires the
estimation of the factor a. and the data sequence
s from the combined observation Xc. This

Now, joint

problem can be solved in a similar way as in the
blind phase estimation method with multiple
initial estimates and the post selection scheme '
h Using (15) and from the Gaussian assumption
of V., we can obtain the pre—combined LS

problem as

arg WD X —ar, sl (16)

Since elements of s are constrained to finite
alphabets, this again is a nonlinear separable
optimization problem with mixed discrete and

g8

(1467)
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This pre-combined LS
problem can be solved as follows: Minimizing (16}

continuous variables.

with respect to a. with s fixed, we obtain

a. = (s’s)'s'X,. (n
Substituting (17) into (16), we can obtain the ML

estimate of s as

arg msinll(I— (s’s)" -ss )X, IP _ (18)

Although the global minimization of (18) can be
computed by exhaustive two-dimensional search,
we would develop a much simpler iterative
method. To get a simpler method for the
pre-combined LS problem, we develop a simple
block method that estimates simultaneously the
factor a. and the data sequence by using the
FAP and the alternating projection technique. We

begin by assuming an initial estimate a, =ae’t
of a.. An unconstrained LS estimate of data
seguence ;,w is obtained by minimizing (16) with
respect to s, with «. fixed as

s =X.a "
The constrained estimate s is then obtained by
projecting ;uc onto finite alphabet space as

s = proj(s.c) = proj(X, a.™) (19)

Then, a better estimate of a. is obtained by
substituting (19) back into (17). We continue this

process until ¢, and/or s converge.

This method may not converge to the global
optimum with an arbitrary initial estimate. Hence,
it uses ~ndiv different

initial  estimates

A _ A — it . . .
{Oeos =00 e ™ i=1- ndiv} corresponding to a

set of ndiv different initial phases to assure the
convergence to the global optimum as done in the
JC-DSE method. After respective estimations of a
pair of (a., s) with all the ndiv initial estimates,
the pair that minimizes the pre-combined LS

criterion of (16), (&0,3), is decided as the final

estimates of (%:>S). We summarize the PC-BPE
method as follows:
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Pre-Combining and Iterative Phase Estimation
Method with Multiple Initial Estimates:

1. Compute €p=Pe- vec(Ryy ) = pe —vec(X *X)

2. Determine oo from (12) or (13).
3 X,=X-¢c,
4. For { = 1, ndiv
42) ¢, ={(-05)/ndiv}- (x/2), k =0

— —i9,.
4b) Feuo=0€e "

4c) k=k+1
.S, =projX.a” )

k=1

. 1
C 0 = (8807 s X,

4d) Repeat 4C) ul'ltﬂ(a”"k ,Si‘k) = (acjvk‘l’sivkvl) .
4e) (@i, si)=(acui Ski).
End;
5. (@,8)=arg min X, —a;-slf , £=1 - ndiv,
(Geinsi)
Starting with each initial estimate, this method
also converges very rapidly to an extreme point.
O(25N)
iteration, thus the

This  requires about complex
multiplications at each
computational complexity for all the iteration
processes is about ndiv’nicnuv*O(25N) complex
possible

multiplications for estimating ndiv

candidates, assuming nicnv  iterations  to
convergence. Therefore, this method can reduce
the computational complexity by a factor of above
M as compared to that of the JC-DSE method in
Section IV for possible
candidates. Also, this method requires (MPN+ &
M) complex multiplications by using the power
method with & iterations for c% and MN
complex multiplications for X. and ndiv'N

complex multiplications for the post selection.

estimating  ndiv

VI. SIMULATION RESULTS AND
DISCUSSIONS

We present several simulation results to
demonstrate the performance of the two proposed
methods on the SER and the estimated accuracy

of the channel parameters. For comparison, we

Eail=e FHow A% wy SR

also present the symbol error performance
obtained using the exact channel parameters (It
will be marked as ideal performance in figures.)
and Cramer-Rao bounds (CRBs).

In our simulations, we consider two symmetric
modulations such as 4-QAM and 16-QAM, and
consider 2 and 4 as appropriate ndiv values for
4-QAM and 16-QAM modulations, respectively.
In every experiment, a total of 1x10° symbols are
used to obtain the SER as a function of SNRs
(i.e., SNR per bit at the strongest branch, branch
#1 in all our experiments) with N as a parameter.
Also, the means and variances of the channel
parameters are computed using the same set of
symbols. We consider N=4, 8, 16, 32, and 64 for
4-QAM, and N=10, 16, 32 and 64 for 16-QAM.
We use 3 diversity branches (M=3) which have
(1.0, 0%, (0.5, 140, and (0.866, -90°) pairs of the
amplitudes and phases, respectively. The above
combination of amplitudes and phases gives the
largest phase deviation from the selected initial
phases for both the modulations considered.

SNR (dB)

33 1. 4-QAM A4 JC-DSE dhye] sz
Nell -2 SNRpell i@ A& 257%

Fig. 1. Symbol error rate of the JC-DSE method as
a function of SNRy, with N as a parameter
in the 4-QAM case.

(1468)
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s s 7 s s 10 T 12
SNR(dB)
38 2. 16-QAM w4 JC-DSE #W9 sipd<s
Nel| @& SNRyell o3t A8 o5&
Fig. 2. Symbol error rate of the JC-DSE method as
a function of SNR, with N as a parameter
in the 16~QAM case.

Figs. 1 and 2 show SERs of the JC-DSE method
as a function of SNRy with N as a parameter for
4-QAM and 16-QAM, respectively. From these
figures, we see that the JC-DSE method has
almost the same performance as the ideal
performance (using exact parameters) with all N
considered, irrespective of modulation types. The
degradation with a quite small N (e.g., N=4 for
4-QAM and N=10 for 16-QAM) is still tolerable.
The performance gets improved as N increases.
Fig. 3 shows the root-mean-squared (RMS)
errors of the channel parameters for 4-QAM.
From this, we see that the RMS errors for both
the amplitude and the phase angle are very close
to the corresponding CRBs, thus concluding the
estimates obtained by the JC-DSE method to be
very efficient. However, the RMS errors of the
phase estimates diverge rapidly from the
corresponding CRBs as SNR decreases. With
smaller N, the degree of divergence gets severer.

Figs. 4 and 5 show SERs of the PC-BPE
method as a function of SNRy with N as a
parameter for 4-QAM and 16-QAM, respectively.

(1469)
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o - Eeimated (N=4)  —o— CRB (N=d)

- -6- - Estimated (N=8)  —a— CRB (N=8§)
= - Estimatad (N=16) = - CRB (N=16)
a. . Estimated (N=32) ..a.- CRB (N=32}

- o - Estimated (N=G4) e CRB (N=64}

30

SNR (dB}

(a)

25+

20 ;.

RMS error(deg)

- -o- - Estimated (N=4)  —o.— CRB (N=4)
-5 - Estimated (N=8)  —a.. CRB (N=8)
- -u-- Estimatad (N=18) —e— CRB (N=16)
--a. - Estimated (N=32) e~ CRB (N=32)
- o - Estimated (N=64) —o— CRB (N=54)

a3 3.

Fig. 3.

SNR (dB)

(b)

4-QAM HHAlolA JC-DSE whge] w4
Nell @2 Ad sjejeleje] RMS 24

(@ A71 (b) 9142

RMS errors of the channel parameters
estimated by the JC-DSE method as a
function of SNRy with N as a parameter in
the 4-QAM case.

(a) Amplitude (b) Phase angle
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Fig. 4. Symbol error rate of the PC-BPE method
as a function of SNR, with N as a

parameter in the 4-QAM case.

8 ‘9 1‘0 1.1 12

SNR(dB)

32 5. 16-QAM HHAllA PC-BPEMH Y] wirjss
Nol| w}2& SNRpoll 3t A% 278

Fig. 5. Symbol error rate of the PC-BPE method

as a function of SNRy, with N as a
parameter in the 16-QAM case.

From these, we see that the PC-BPE method

g AT BEH
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also has almost the same performance as the ideal
performance with all N considered, irrespective of
modulation types. From Figs. 1, 2, 4 and 5, we
can not see any noticeable difference in the SER
performance between the proposed two methods.
By intensive computer simulations, however, we
have found that the performance of the JC-DSE
method is quite slightly better than that of the
PC-BPE method. Also, from Fig. 6, we see that
the RMS errors of the amplitude estimates
obtained by the PC-BPE method are very close to
the corresponding CRBs, and do not show any
noticeable difference as compared to those by the
JC-DSE method. However, the RMS errors of the
phase estimates diverge largely from the
corresponding CRBs over various values of SNR
and N. This large deviation is due to the
inaccuracy of the initial estimate of the channel
parameter vector. Again, from Figs. 1, 2, 4 and 5,
we note that the SER pei‘forrnance is not severely
affected in spite of relatively large deviations in
phase angles. This shows the relative importance
of the amplitude in the combining performance
rather than the phase. Finally, Fig. 7 shows the
RMS errors of the phase estimates obtained by a
modified PC-BPE method that performs
additionally Steps 3.c) and 3.d) only of the
JC-DSE method using the estimated sequence
after the completion of the PC-BPE method. From
this figure, we see that the RMS errors of the
phase estimates by the modified method have
been improved largely over those by the PC-BPE
method and are almost same as those by the
JC-DSE method. The SER performance and RMS
errors of the amplitude estimates of the modified
method are almost same as those of the above
two methods.

Fig. 8 shows the average nicnv per respective
estimation with different initial estimates of the
JC-DSE method and the PC-BPE method. From
this, we see that nicnw increases as N increases
and SNR decreases. The increased nicnv with
increased N is due that the number of parameters
to be updated at each iteration is increased.
Again, we see no noticeable difference between
the two methods.

(1470)
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Fig. 6.

3 4
SNR (dB)

(b)

4-QAM HHol4 PC-BPE whiel w74
Nl o2 Ad sjetelel] RMSeat

(@ A7l (b) 944

RMS errors of the channel parameters
estimated by the PC-BPE method as a
function of SNR, with N as a parameter in
the 4-QAM case.

(a) Amplitude (b) Phase angle
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N4 Neojl w2 $47he] RMS. A}
RMS errors of the phase angles estimated
by the modified PC-BPE method as a
function of SNRy with NN as a parameter in

Fig. 7.

the 4-QAM case.

NICNV

--o - JC-DSE (N=8)
- -m-- JC-DSE (N=18)
-a-- JC-DSE (N=32)

JC-DSE (N=64)

l 6. - JC-DSE (N=4)
o

—0- PC-BPE (N=4)
—a— PC-BPE (N=8)

e PC-BPE (N=16) |
—a— PC-BPE (N=32) |

—e— PC-BPE (N=64;

y |

—A\A-\‘ \
\\\L\ \\
O O e e e
e TS Oy
. . o —
1 2 3 4 5 6 7
SNR (dB)

2% 8. 4-QAM WAGIA A TR e
WS Nel 12 2 240k Sadel] Aele

YT 0 P95

Fig. 8. Number of iterations to convergence per
respective initial estimate (nicnv) of the
proposed two methods as a function of
SNR}, with N as a parameter in the 4-QAM

case.
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Now, we can conclude that the proposed two
methods can estimate accurately the channel
parameters for MRC combining even with a quite
small subset of data (e.g., N=4, 8, 16). These blind
MRC methods based on FAP can be used
effectively in the system of requiring the dynamic
selection of combining branches. The PC-BPE
method can be used successfully to combine the
diversity branches simply instead of the relatively
complex JC-DSE method. To reduce further the
computational complexity, efficient initialization
schemes which can assure the global convergence
should be developed.

VI. CONCLUSIONS

We have presented two block methods for blind
MRC based on the ML principle and the FAP
inherent in digital communication systems. We
showed that the methods can provide accurate
estimates of channel parameters even with a
small subset of data, thus realizing nearly perfect
combining. The channel parameters of selected
diversity branches and the data sequence were
estimated simultaneously by using the alternating
projection technique. We developed two methods:
(1) JC-DSE method, and (2) PC-BPE method that
is much simpler than the JC-DSE method in
terms of the computational complexity. Efficient
initialization schemes for the two methods, that
can assure the convergence to the global optimum
were also presented.

Now, we can conclude that the proposed two
methods can estimate accurately the channel
parameters for MRC even with a quite small
subset of data (e.g., N=4, 8, 16). These blind MRC
methods based on FAP can be used effectively in
the system of requiring the dynamic selection of
combining branches. To reduce further the
computational complexity, efficient initialization
schemes that can assure the global convergence
should be developed. The PC-BPE method
reduces the computational complexity for
estimating ndiv possible candidates by about a
factor of M as compared to that of the JC-DSE
method without showing a noticeable performance
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