ON DERIVATIONS IN NONCOMMUTATIVE SEMISIMPLE BANACH ALGEBRAS

YONG-SOO JUNG

ABSTRACT. The purpose of this paper is to prove the following results: Let \(A \) be a noncommutative semisimple Banach algebra. (1) Suppose that a linear derivation \(D : A \rightarrow A \) is such that \(\langle D(x), x \rangle x = 0 \) holds for all \(x \in A \). Then we have \(D = 0 \). (2) Suppose that a linear derivation \(D : A \rightarrow A \) is such that \(D(x)x^2 + x^2D(x) = 0 \) holds for all \(x \in A \). Then we have \(D = 0 \).

1. Introduction

Throughout this paper \(R \) will represent an associative ring with center \(Z(R) \), and \(A \) will represent an algebra over a complex field. The commutator \(xy - yx \) will be denoted by \([x, y] \). We make use of the basic commutator identities \([xy, z] = [x, z]y + x[y, z], [x, yz] = [x, y]z + y[x, z] \). An additive mapping \(D \) from \(R \) to \(R \) is called a derivation if \(D(xy) = D(x)y + xD(y) \) holds for all \(x, y \in R \). A derivation \(D \) is inner if there exists \(a \in R \) such that \(D(x) = [a, x] \) holds for all \(x \in R \). Recall that a ring \(R \) is prime if \(aRb = (0) \) implies that either \(a = 0 \) or \(b = 0 \). Sinclair [1] has proved that every linear derivation on a semisimple Banach algebra is continuous. Singer and Wermer [4] state that every continuous linear derivation on a commutative Banach algebra maps the algebra into its Jacobson radical. Combining these two results we obtain that there are no nonzero derivations on a commutative semisimple Banach algebra. Now it seems natural to ask, under what additional assumptions a linear derivation on a noncommutative semisimple Banach algebra is zero. It is our aim in this paper to give answers to the question above.

Received September 26, 1997.
1991 Mathematics Subject Classification: 46H05, 46J05.
Key words and phrases: derivation, inner derivation, prime ring, semisimple Banach algebra.
2. The results

We now state and prove the main results.

Theorem 2.1. Let A be a noncommutative semisimple Banach algebra. Suppose that there exists a linear derivation $D : A \to A$ such that $[D(x), x]x = 0$ holds for all $x \in A$. Then we have $D = 0$.

Proof of Theorem 2.1. For the proof of the theorem we shall need the following purely algebraic result which can be proved without any specific knowledge concerning prime rings.

Lemma 2.1. Let R be a noncommutative prime ring of characteristic different from two and I a nonzero two-sided ideal of R. Suppose that there exists a derivation $D : R \to R$ such that $[D(x), x]x = 0$ holds for all $x \in I$. Then we have $D = 0$ on R.

Proof of Lemma 2.1. We define a mapping $B(., .) : I \times I \to I$ by the relation

\[
(1) \quad B(x, y) = [D(x), y] + [D(y), x], \quad x, y \in I.
\]

Obviously, $B(x, y) = B(y, x)$ for all $x, y \in I$ and $B(., .)$ is additive in both arguments. Moreover, a simple calculation shows that the relation

\[
(2) \quad B(xy, z) = B(x, z)y + xB(y, z) + D(x)[y, z] + [x, z]D(y)
\]

holds for all $x, y, z \in I$. We shall write $f(x)$ for $B(x, x)$. Then

\[
(3) \quad f(x) = 2[D(x), x], \quad x \in I.
\]

It is easy to see that

\[
(4) \quad f(x + y) = f(x) + f(y) + 2B(x, y)
\]

is fulfilled for all $x, y \in I$. Now the assumption of the lemma can be written as follows

\[
(5) \quad f(x)x = 0, \quad x \in I.
\]
On derivations in noncommutative semisimple Banach algebras

The linearization of (5) gives

\[0 = (f(x) + f(y) + 2B(x, y))(x + y) \]
\[= f(x)x + f(y)x + 2B(x, y)x + f(x)y + f(y)y + 2B(x, y)y, \]

which reduces to

\[f(x)y + f(y)x + 2B(x, y)x + 2B(x, y)y = 0, \quad x, y \in I. \]

Replacing \(x \) by \(-x \) in (7), and subtracting the new result from (7), we have

\[f(x)y + 2B(x, y)x = 0, \quad x, y \in I, \]

since \(R \) is of characteristic not two. Let \(y \) be \(yx \) in (8). Then, by (5) and (8), we get

\[0 = f(x)yx + 2B(x, yx)x \]
\[= 2[y, x]D(x)x, \quad x, y \in I. \]

Hence we arrive at

\[[y, x]D(x)x = 0, \quad x, y \in I, \]

since \(R \) is of characteristic not two. We intend to prove that

\[D(x)x = 0 \]

holds for all \(x \in I \). Suppose on the contrary that \(D(a)a \neq 0 \) for some \(a \in I \). Note that \(I \) is a non-zero noncommutative prime ring of characteristic not two and a mapping \(y \mapsto [y, a] \) is an inner derivation on \(I \). Then (10)and Lemma 1 in [2] imply \(a \in Z(I) \). We have therefore proved that \(D(x)x = 0 \) in case \(x \notin Z(I) \). It remains to prove that \(D(x)x = 0 \) also in the case when \(x \in Z(I) \). Let \(x \in Z(I) \) and let \(y \notin Z(I) \). We have also \(x + y \notin Z(I) \). We see that \(D(y)y = 0 \) and
\[D(x + y)(x + y) = 0. \] Then \[0 = (D(x) + D(y))(x + y) = D(x)x + D(x)y + D(y)x + D(y)y = D(x)x + D(x)y + D(y)x. \] Hence

(12) \[D(x)x + D(x)y + D(y)x = 0. \]

Replacing \(x \) by \(-x\) in (12), we have

(13) \[D(x)x - D(x)y - D(y)x = 0. \]

From (12) and (13) it follows \(D(x)x = 0 \), which completes the proof of (11). The linearization of (11) leads to

(14) \[D(x)y + D(y)x = 0, \ x, y \in I. \]

Substituting \(zy \) for \(y \) in (14), we get

(15) \[0 = D(x)zy + D(zy)x \\
= D(x)zy + zD(y)x + D(z)y, \ x, y \in I, \ z \in R. \]

Combining (14) with (15), we obtain

(16) \[[D(x), z]y + D(z)y = 0, \ x, y \in I, \ z \in R. \]

Replacing \(z \) by \(D(x) \) in (16), we have

\[D^2(x)yx = 0, \ x, y \in I. \]

Since \(I \) is prime, we know that \(D^2(x) = 0 \) holds for all \(x \in I \). This yields \(D(x) = 0 \) for all \(x \in I \) by Theorem 1 in [2]. Now, substituting \(rx \) (\(r \in R \)) for \(x \), we have \(D(r)x = 0 \), that is, \(D(r)I = 0 \). Since \(R \) is prime and \(I \) is nonzero, it follows that \(D(r) = 0 \) for all \(r \in R \). The proof of Lemma 2.1 is complete. \(\square \)
On derivations in noncommutative semisimple Banach algebras

Proof of Theorem 2.1 continued. By the result of Johnson and Sinclair [1] every linear derivation on a semisimple Banach algebra is continuous. Sinclair [3] has proved that every continuous linear derivation on a Banach algebra leaves the primitive ideals of A invariant. Hence for any primitive ideal $P \subset A$, we can define a linear derivation $D_P : A/P \to A/P$ by $D_P(x + P) = D(x) + P$, $x \in A$. The assumption of the theorem $[D(x), x]x = 0, x \in A$ gives $[D_P(x + P), x + P](x + P) = P, x \in A$. Since P is a primitive ideal, A/P is prime. Hence, in case A/P is noncommutative, we have $D_P = 0$, since all the assumptions of Lemma 2.1 are fulfilled. In case A/P is commutative, we can conclude that $D_P = 0$ as well since A/P is semisimple and since we know that there are no nonzero linear derivations on commutative semisimple Banach algebras. This implies that $D(x)$ is in the intersection of all primitive ideals of A for all $x \in A$. Since the intersection of all primitive ideals is the Jacobson radical, and A is semisimple, it follows $D = 0$. The proof of Theorem 2.1 is complete.

As a special case of Theorem 2.1 we obtain the following result which characterizes commutative semisimple Banach algebras among all semisimple Banach algebras.

\[\Box \]

Corollary 2.1. Let A be a semisimple Banach algebra. Suppose that $[[x, y], x]x = 0$ holds for all $x, y \in A$. Then A is commutative.

Theorem 2.2. Let A be a noncommutative semisimple Banach algebra. Suppose that there exists a linear derivation $D : A \to A$ such that $D(x)x^2 + x^2D(x) = 0$ holds for all $x \in A$. Then we have $D = 0$.

Proof of Theorem 2.2. For the proof of Theorem 2.2 as in Theorem 2.1 we also need prove the following algebraic result.

\[\Box \]

Lemma 2.2. Let R be a noncommutative prime ring of characteristic different from two and I a nonzero two-sided ideal of R. Suppose that there exists a derivation $D : R \to R$ such that $D(x)x^2 + x^2D(x) = 0$ holds for all $x \in I$. Then we have $D = 0$ on R.

Proof of Lemma 2.2. Suppose that

\[D(x)x^2 + x^2D(x) = 0 \]
holds for all $x \in I$. The linearization of (1) leads to

$$0 = D(x)xy + D(x)yx + D(x)y^2 + D(y)x^2 + D(y)xy$$

$$+ D(y)yx + x^2D(y) + xyD(x) + xyD(y)$$

$$+ yxD(x) + yxD(y) + y^2D(x), \ x, y \in I. \quad (2)$$

Replacing y by $-y$ in (2), and subtracting the result from (2), we have

$$D(x)xy + D(x)yx + D(y)x^2 + x^2D(y)$$

$$+ xyD(x) + yxD(x) = 0, \ x, y \in I, \quad (3)$$

since R is of characteristic not two. Substituting xy for y in (3) and using (1), we arrive at

$$D(x)xyx + xD(x)x^2 + D(x)yx + x^3D(y)$$

$$+ x^2yD(x) + xxyD(x) = 0, \ x, y \in I. \quad (4)$$

Left multiplication of (3) by x leads to

$$xD(x)xy + xD(x)yx + xD(y)x^2 + x^3D(y)$$

$$+ x^2yD(x) + xyxD(x) = 0, \ x, y \in I. \quad (5)$$

Subtracting (5) from (4), we obtain

$$-xD(x)xy + [D(x), x]yx + D(x)y^2 = 0, \ x, y \in I. \quad (6)$$

Replacing y by $yD(x)$ in (6), we have

$$-xD(x)xyD(x) + [D(x), x]yD(x)x + D(x)yD(x)x^2 = 0, \ x, y \in I. \quad (7)$$

Right multiplication of (6) by $D(x)$ gives

$$-xD(x)xyD(x) + [D(x), x]yxD(x) + D(x)y^2D(x) = 0, \ x, y \in I. \quad (8)$$

Subtracting (8) from (7), we obtain

$$D(x)y[D(x), x^2] + [D(x), x]y[D(x), x] = 0, \ x, y \in I. \quad (9)$$
Putting xy instead of y in (9), it follows that

$$D(x)xy[D(x), x^2] + [D(x), x]xy[D(x), x] = 0, \ x, y \in I. \ (10)$$

Left multiplication of (10) by x gives

$$xD(x)y[D(x), x^2] + x[D(x), x]y[D(x), x] = 0, \ x, y \in I. \ (11)$$

Subtracting (11) from (10), we obtain

$$[D(x), x]y[D(x), x^2] + [[D(x), x], x]y[D(x), x] = 0, \ x, y \in I. \ (12)$$

Replacing y by $y[D(x), x]z$ in (12), we get

$$[D(x), x]y[D(x), x]z[D(x), x^2] + [[D(x), x], x]y[D(x), x]z[D(x), x] = 0, \ x, y, z \in I.$$

Using (12) we can write $-[[D(x), x], x]z[D(x), x]$ for $[D(x), x]z[D(x), x^2]$ and $-[D(x), x]y[D(x), x^2]$ for $[[D(x), x], x]y[D(x), x]$ in the above calculation.

Hence we arrive at

$$[D(x), x]y[[D(x), x], x]z[D(x), x] + [D(x), x]y[D(x), x^2]z[D(x), x] = 0,$$

which can be reduced in the form

$$[D(x), x]y[D(x), x]xz[D(x), x] = 0, \ x, y, z \in I.$$

Since I is a prime ring, it follows that

$$[D(x), x]x = 0$$

holds for all $x \in I$. This implies that $D = 0$ on R by Lemma 2.1. The proof of Lemma 2.2 is complete. \[\square\]
Proof of Theorem 2.2 continued. Let us use the same argument as that used to prove Theorem 2.1. Then we can define a linear derivation $D_P : A/P \to A/P$, where P is any primitive ideal of A, by $D_P(x + P) = D(x) + P$, $x \in A$. Also the assumption of Theorem 2.2 $D(x)x^2 + x^2D(x) = 0$, $x \in A$ gives $D_P(x + P)(x + P)^2 + (x + P)^2D_P(x + P) = P$, $x \in A$. Hence Lemma 2.2 deduces $D_P = 0$, and semisimplicity of A forces $D = 0$. The proof of Theorem 2.2 is complete.

We also obtain the following result as a special case of Theorem 2.2 as in Corollary 2.1.

Corollary 2.2. Let A be a semisimple Banach algebra. Suppose that $[x, y]x^2 + x^2[y, x] = 0$ holds for all $x, y \in A$. Then A is commutative.

References

Department of Mathematics, Chungnam National University, Taejon 305-764, Korea

590