WEAKLY LAGRANGIAN EMBEDDING
AND PRODUCT MANIFOLDS

YANGHYUN BYUN AND SEUNGHUN YI

ABSTRACT. We investigate when the product of two smooth manifolds admits a weakly Lagrangian embedding. We prove that, if M^m and N^n are smooth manifolds such that M admits a weakly Lagrangian embedding into C^m whose normal bundle has a nowhere vanishing section and N admits a weakly Lagrangian immersion into C^n, then $M \times N$ admits a weakly Lagrangian embedding into C^{m+n}. As a corollary, we obtain that $S^m \times S^n$ admits a weakly Lagrangian embedding into C^{m+n} if $n = 1, 3$. We investigate the problem of whether $S^m \times S^n$ in general admits a weakly Lagrangian embedding into C^{m+n}.

1. Introduction

The notion of weakly Lagrangian embedding was introduced by T. Kawashima ([5]) as a weaker version of Lagrangian embedding. He showed that S^n admits a weakly Lagrangian embedding into C^n if and only if $n = 1, 3$, from which it follows that S^n does not admit any Lagrangian embedding into C^n if $n \neq 1, 3$. In fact, later it has been shown that, for any manifold M^n which admits a Lagrangian embedding into C^n, we have $\pi_1(M) \neq 1$ ([2]). Therefore it follows that S^n admits a Lagrangian embedding into C^n only when $n = 1$.

This note investigates when the product of two smooth manifolds admits a weakly Lagrangian embedding. In particular, we have

Theorem 1. Let M, N be smooth manifolds of dimension m, n, respectively. Assume that M admits a weakly Lagrangian embedding into C^m whose normal bundle has a nowhere vanishing section and N
admits a weakly Lagrangian immersion into \mathbb{C}^n. Then $M \times N$ admits a weakly Lagrangian embedding into \mathbb{C}^{m+n}.

In fact, the assumption on the existence of a nowhere vanishing section on the normal bundle is redundant if M is an oriented closed manifold: Let $f : M \to \mathbb{C}^m$ be a weakly Lagrangian embedding. We have that $\nu_f \cong (-1)^{n(n-1)/2}TM$ (Proposition 2.1) and $\chi(M) = 0$ (Lemma 4.1). Thus the Euler characteristic of ν_f vanishes, which means ν_f admits a nowhere vanishing section.

As a corollary of Theorem 1, we conclude:

Theorem 2. $S^m \times S^n$ admits a weakly Lagrangian embedding into \mathbb{C}^{m+n} if n is 1 or 3.

In particular, the above provides more examples, in addition to S^3, of manifolds which admits a weakly Lagrangian embedding but not any Lagrangian embedding (see Corollary 3.2 below).

Also we have that $S^m \times S^n$ does not admit any weakly Lagrangian embedding into \mathbb{C}^{m+n} if both m and n are even (see the below of Lemma 4.1). However we don’t know what happens when one of m, n is odd while none of the two is 1 or 3, which is a subject of our ongoing investigation. We will provide a reason why this problem is more difficult in this case in the last section.

2. Basic notions and facts

Two subbundles η_0 and η_1 of a vector bundle ξ over a smooth manifold M is said to be homotopic if there exists a subbundle $\tilde{\eta}$ of $\xi \times I$ such that $\tilde{\eta}|_{M \times \{0\}} = \eta_0$ and $\tilde{\eta}|_{M \times \{1\}} = \eta_1$.

A symplectic form on a vector bundle is a nondegenerate two form on it. A vector bundle of finite rank is referred to as a Lagrangian vector bundle if it is considered with a fixed symplectic two form. Note that a Lagrangian vector bundle should be of even rank. A subbundle η of a Lagrangian vector bundle ξ is a Lagrangian subbundle if $2 (\text{rank } \eta) = \text{rank } \xi$ and the restriction of the symplectic form to η is the zero form. A subbundle η of a symplectic vector bundle ξ is called a weakly Lagrangian subbundle if η is homotopic to a Lagrangian subbundle of ξ.

810
Weakly Lagrangian embedding and product manifolds

Now let \(f : L \to M \) be an embedding (resp. immersion) of a smooth manifold \(L \) into a symplectic manifold \(M \) with a symplectic structure \(\omega \). We call \(f \) a Lagrangian embedding (resp. immersion) if the tangent bundle \(TL \) of \(L \) is a Lagrangian subbundle of the symplectic vector bundle \(f^*TM \) (with the symplectic form \(f^*\omega \)). Similarly, \(f \) is a weakly Lagrangian embedding (resp. immersion) if \(TL \) is a weakly Lagrangian subbundle of \(f^*TM \).

We will consider \(\mathbb{C}^n \) with the usual symplectic structure. A Lagrangian embedding or a weakly Lagrangian embedding will be understood as 'into \(\mathbb{C}^n \)' unless otherwise specified.

Note that the notion of weakly Lagrangian embedding (resp. immersion) is invariant under regular homotopy. That is, if \(f_0 \) and \(f_1 \) are embeddings (resp. immersions) homotopic through embeddings (resp. immersions) and \(f_0 \) is a weakly Lagrangian embedding (resp. immersion), then \(f_1 \) is also such.

We recall some basic properties of a weakly Lagrangian embedding.

Proposition 2.1. For a weakly Lagrangian embedding \(f : L^n \to M^{2n} \), from an oriented manifold \(L \), the followings hold

i) \(\nu(f) \cong (-1)^{n(n-1)/2} TL \), as oriented vector bundles, where \(\nu(f) \) is the normal bundle of \(f \) with orientation defined in the usual way.

ii) If \(L \) is a closed manifold and \(a = f_*([L]) \in H_n(M, Z) \), then we have

\[
a \cdot a = (-1)^{n(n-1)} \chi(L)
\]

where \([L] \in H_n(L, Z)\) denotes the fundamental class and \(a \cdot a \) is the Kronecker index \(\langle Da, a \rangle \) with \(D \) denoting the Poincaré isomorphism \(H_n(M, Z) \to H^n_{comp}(M, Z) \).

The proof is a copy of that of Proposition 2, [5]. We note that i) above is true even if \(f \) is only a weakly Lagrangian immersion. On the other hand, we need the condition that \(f \) is an embedding for ii) above since in this case we make use of the normal neighborhood of \(f(L) \subset M \), which is impossible if \(f \) is just an immersion.

3. Proofs of Theorem 1, 2

The following is the key lemma to prove Theorem 1.
Lemma 3.1. Assume $f : M^m \to P^{2m}$, $g : N^n \to Q^{2n}$ are maps between smooth manifolds such that i) f is an embedding whose normal bundle has a nowhere vanishing section and ii) g is an immersion. Then $f \times g : M \times N \to P \times Q$ is regularly homotopic to an embedding.

Proof. We may assume that g is completely regular (cf. [1]). Let y_1, y_2, \cdots and z_1, z_2, \cdots be distinct points in N such that $g(y_i) = g(z_i)$, $i = 1, 2, \cdots$. Note that such points appear discretely.

We may construct (for example, using the exponential map) neighborhoods U_1, U_2, \cdots of y_1, y_2, \cdots which are diffeomorphic to the closed disc D^n and such that $U_i \cap U_j = \emptyset$ if $i \neq j$ and $U_i \cap \{y_1, y_2, \cdots, z_1, z_2, \cdots\} = \{y_i\}$, $i = 1, 2, \cdots$.

Let $\delta : N \to [0, 1]$ be a smooth function such that $\delta(y_i) = 1$, $i = 1, 2, \cdots$ and $\delta(N - \cup_{i=1,2,\cdots} U_i) = \{0\}$.

Note that the existence of nowhere vanishing section of the normal bundle is equivalent to the existence of a smooth embedding $F : M \times [0, 1] \to P$ such that $F(x, 0) = f(x)$.

Now consider the map

$$H : M \times N \times [0, 1] \to P \times Q$$

defined by $H(x, y, t) = (F(x, t\delta(y)), g(y))$.

It is straightforward to see that for each $t \in [0, 1]$, $H_t : M \times N \to P \times Q$ is an immersion. Thus H_0, H_1 are regularly homotopic to each other.

We show that H_1 is an embedding as follows: Assume that $H_1(x, y) = H_1(x', y')$, that is, $F(x, \delta(y)) = F(x', \delta(y'))$ and $g(y) = g(y')$, while $(x, y) \neq (x', y')$. If $y = y'$, then we have $F(x, \delta(y)) = F(x', \delta(y))$ and we may conclude $x = x'$ since F is an embedding. Therefore, we have $y \neq y'$. Now, by assumption on g, $g(y) = g(y')$ implies that $y = y_i, y' = z_i$ (or $y = z_i, y' = y_i$) for some i. But then we have $\delta(y_i) = 1$, $\delta(z_i) = 0$ and $F(x, \delta(y)) = F(x', \delta(y'))$ is impossible since F is an embedding. This proves the Lemma. \(\square\)

As corollaries of the previous lemma, we obtain

Proof of Theorem 1. Let $f : M \to \mathbb{C}^m, g : N \to \mathbb{C}^n$ be the weakly Lagrangian embedding and the weakly Lagrangian immersion, respectively. Then $f \times g : M \times N \to \mathbb{C}^m \times \mathbb{C}^n = \mathbb{C}^{m+n}$ is regularly homotopic
to an embedding by the previous lemma. Since being a weakly Lagrangian immersion is invariant under regular homotopy, the proof is complete. □

Proof of Theorem 2. According to Kawashima ([5]), S^n admits a weakly Lagrangian embedding if and only if $n = 1, 3$. Also according to Weinstein ([6]), S^n admits a Lagrangian immersion for any natural number n. □

Corollary 3.2. $S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k}$ admits a weakly Lagrangian embedding into $C^{n_1+n_2+\cdots+n_k}$ if $n_i = 1$ or 3 for some $i = 1, 2, \cdots, k$.

Note that $S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k}$ admits a weakly Lagrangian embedding into $C^{n_1+n_2+\cdots+n_k}$, but it does not admit any Lagrangian embedding into $C^{n_1+n_2+\cdots+n_k}$ if $n_i = 3$ for some i and $n_i \neq 1$ for any $i = 1, 2, \cdots k$, since in this case $\pi_1(S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k}) = 1$.

4. The case of $S^m \times S^n$

As a corollary of ii), Proposition 2.1 we have the following.

Lemma 4.1. Let L be an orientable compact smooth n-manifold which admits a weakly Lagrangian embedding into C^n. Then we have $\chi(L) = 0$.

Lemma 4.1 proves that, if both m, n are even, $S^m \times S^n$ does not admit any weakly Lagrangian embedding since $\chi(S^m \times S^n) \neq 0$. In fact, the same result can also be obtained by i) of Proposition 2.1 since the tangent bundle of $S^m \times S^n$ is non-trivial if both m, n are even, while the normal bundle of any embedding of $S^m \times S^n$ is trivial if $m, n > 1$, which follows from the triviality of the normal bundle of the standard embedding of $S^m \times S^n$ into C^{m+n} and also from the following.

Lemma 4.2. For any simply connected closed smooth m-manifold, $m \geq 4$, any two of its embeddings into C^m are isotopic to each other through smooth embeddings.

Note that if two embeddings are isotopic to each other then the normal bundles of them are isomorphic. A proof of Lemma 4.2 is provided.
below in this section. Note that \(S^2 \) is the only simply connected 2-manifold and it does not admit any weakly Lagrangian embedding and also that any compact orientable 3-manifold is parallelizable. Therefore, we may summarize and generalize the discussions so far as follows.

Proposition 4.3. Let \(M \) be a simply connected closed smooth \(m \)-manifold which admits an embedding into \(\mathbb{C}^m \) whose normal bundle is trivial. If \(M \) admits a weakly Lagrangian embedding into \(\mathbb{C}^m \), then \(TM \) is trivial.

Note that, if the tangent bundle of a manifold is trivial, its Euler characteristic vanishes even if the converse is not true in general. Therefore we have obtained a sharper condition than the vanishing of the Euler characteristic for \(S^m \times S^n \) to admit a weakly Lagrangian embedding into \(\mathbb{C}^{m+n} \); its tangent bundle should be trivial.

However, we are not lucky enough here as the following holds.

Fact. The tangent bundle of \(S^m \times S^n \) is trivial if \(m \) or \(n \) is odd.

Therefore, even if neither of \(m, n \) is 1 nor 3, we cannot conclude that \(S^m \times S^n \) does not admit any weakly Lagrangian embedding into \(\mathbb{C}^{m+n} \) if one of \(m, n \) is odd. The problem is left open.

The above fact follows from the observation below.
Let \(M \) be a smooth \(m \)-manifold such that
i) the tangent bundle \(TM \) is stably trivial and
ii) \(TM \cong \xi + \epsilon^1_M \) for some vector bundle \(\xi \) over \(M \) of rank \(m - 1 \).
Here \(\epsilon^1_M \) means the trivial vector bundle of rank 1 and \(\xi + \epsilon^1_M \) means the Whitney sum.

Let \(N \) denote another smooth \(n \)-manifold whose tangent bundle is stably trivial and consider the product manifold \(M \times N \).

Observation. \(T(M \times N) \cong \epsilon^{m+n}_{M \times N} \).

Proof. It is well-known that

\[
T(M \times N) \cong TM \times TN.
\]

By the assumption,

\[
TM \times TN \cong (\xi + \epsilon^1_M) \times TN.
\]
Weakly Lagrangian embedding and product manifolds

Let \(p_1, p_2 \) denote the projections from \(M \times N \) to \(M, N \), respectively. Then we have

\[
(\xi + \epsilon_M^1) \times TN = p_1^*(\xi + \epsilon_M^1) + p_2^*TN \cong p_1^*\epsilon + p_1^*\epsilon_M^1 + p_2^*TN.
\]

Now it is straightforward to see that

\[
p_1^*\epsilon + p_1^*\epsilon_M^1 + p_2^*TN \cong p_1^*\epsilon + \epsilon_{M \times N}^1 + p_2^*TN \cong p_1^*\epsilon + p_2^*(TN + \epsilon_N^1).
\]

By the assumption,

\[
p_1^*\epsilon + p_2^*(TN + \epsilon_N^1) \cong p_1^*\epsilon + p_2^*(\epsilon_{N}^{n+1}).
\]

Finally, we have the isomorphisms

\[
p_1^*\epsilon + p_2^*(\epsilon_{N}^{n+1}) \cong p_1^*\epsilon + \epsilon_M^{n+1} \cong \epsilon_{M \times N}^{m+n}
\]

which complete the proof. \(\square \)

To provide the postponed proof of Lemma 4.2, we will need the following by A. Haefliger [3].

THEOREM [Haefliger]. Assume \(V, X \) are smooth manifolds of respective dimensions \(n, k \) and assume \(V \) is compact. Suppose \(2k \geq 3(n+1) \). Let \(f: V \to X \) be a continuous map such that \(f \) is an embedding in a neighborhood of \(\partial X \) and \(f(\partial V) \cap f(V - \partial V) = \phi \). Assume \(\pi_i(f) = 0 \) for \(0 \leq i \leq 2n - k + 1 \). Then \(f \) is homotopic to an embedding relative to a neighborhood of \(\partial V \).

Also we need the following fact for which we refer to a work by A. Hatcher [4]. (This must be well known, perhaps with a slightly different condition on the dimensions, even if the authors had problem with finding a more appropriate reference.) In the following, a concordance \(F \) between \(f, g : M \to Q \) means a proper embedding \(F : M \times I \to Q \times I \) such that \(F(x, 0) = (f(x), 0) \) and \(F(x, 1) = (g(x), 1) \) for any \(x \in M \) and an isotopy means a homotopy through embeddings.
THEOREM [Hatcher]. Let Q, M be smooth manifolds with respective dimensions q, m. Assume there is a concordance $F : M \times I \to Q \times I$ between two embeddings $f, g : M \to Q$ and $q - m \geq 3$, $q \geq 6$. Then f, g are isotopic to each other.

Proof. According to A. Hatcher ([4]), in particular, Remark 3, p. 229 together with the second paragraph of §2), under the given condition, F is homotopic to the concordance $f \times I : M \times I \to Q \times I$ relative to $M \times \{0\}$ through concordances. Now restrict the homotopy at $M \times \{1\} \equiv M$ to obtain the isotopy from g to f.

Proof of Lemma 4.2. Let M denote the manifold and $f, g : M \to C^m$ be the two embeddings. Then since C^m is contractible there is a homotopy $H : M \times I \to C^m$ from f to g. Let $\bar{H} : M \times I \to C^m \times I$ denote the map defined by $\bar{H}(x, t) = (H(x, t), t)$ for any $(x, t) \in M \times I$.

We apply the above theorem by Haefliger to conclude that \bar{H} is homotopic to a concordance $F : M \times I \to C^n \times I$ rel $M \times \{0, 1\}$. Here a concordance means simply an embedding such that $F^{-1}(X \times \{0, 1\}) = M \times \{0, 1\}$. Note that, since M is simply connected and C^n is contractible, we have $\pi_i(\bar{H}) = \pi_i(f) = 0$ for $i = 0, 1, 2$ and $2(m + 1) - (2m + 1) + 1 = 2$. Also note that $2(2m + 1) \geq 3(m + 1 + 1)$ if $m \geq 4$.

However the concordance F implies the existence of an isotopy from f to g according to the above theorem by A. Hatcher since $2m - m \geq 3$ and $2m \geq 6$ for any $m \geq 4$.

ACKNOWLEDGMENT. The authors would like to thank the anonymous referee for his help in correcting some mistakes and improving the paper both in mathematics and in typography.

References

Weakly Lagrangian embedding and product manifolds

Yanghyun Byun, Department of Mathematics, Hanyang University, Sungdong-gu, Seoul 133-791, Korea
E-mail: yhbyun@fermat.hanyang.ac.kr

Seunghun Yi, Liberal Arts and Science (Mathematics), Youngdong University, Youngdong, Chungbuk, 370-800, Korea
E-mail: seunghun@kachi.yit.ac.kr