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A NOTE ON THE UPPER AND LOWER BOUNDS OF
SMALL BALL PROBABILITIES FOR GAUSSIAN
PROCESSES WITH STATIONARY INCREMENTS

SEAUNG-HYUNE LEE AND YONG-KAB CHOI

ABSTRACT. In this paper we obtain sharp upper and lower bounds
of small ball probabilities for Gaussian processes with stationary
increments, whose results are essential to estabilish Chung type laws
of iterated logarithm.

1. Introduction

Recently, the upper and lower bounds of small ball probabilities for
Gaussian processes have been studied in several situations by many
authors: Shao [7], Kuelbs, Li and Shao [4], Shao and Wang [9], Monrad
and Rootzén [6], Talagrand {12], Shao [8], Kuelbs and Li [3] and Li and
Shao [5], etc.

Among the above recent results, Shao [7] proved the following fun-
damental theorem on the upper and lower bounds of small ball proba-
bilities for a Gaussian process:

THEOREM A. Let {X(t), 0 < t < 1} be a real-valued Gaussian
process on the probability space (2, S, P) with mean zero, stationary
increments and X (0) = 0. Put 02(h) = E{X(t+h) — X(t)}?, 0<t <
t+ h < 1, where 0%(h) is nondecreasing and concave on [0,1]. Then we
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have

P{ su1<) 1X(t)| < G(m)} < 2exp(—0.17/a:),

P{ sup. 1X(t)| < o(z) + 6e /ooa(:ce_yz) dy} > exp(—2/:c)

for every x € (0, 1).

It is well known that such a kind of small ball probabilities is the
key step in establishing a Chung type law of the iterated logarithm.
The main aim of this paper is to improve the above Theorem A to
the wider class of small ball probabilities in various situations, and to
obtain sharp upper and lower bounds of them.

2. Results

Let {X(t), 0 < t < 1} be an almost surely continuous Gaussian
process on the probability space (f2,S, P) with mean zero, stationary
increments and X (0) = 0. Put 0%(h) = E{X(t+ h) — X(£)}?, 0<t <
t+h < 1, where 02(-) is a nondecreasing function on [0, 1]. Throughout
this paper we always assume that X(-) and o(-) are as in the above
statements. First we shall consider upper bounds of small ball proba-
bilities for the Gaussian process X (-). For proving our results, we need
the following lemmas:

LEMMA 1. [7] Assume that o%(h) is concave on [0,1]. Then we have

n o [o V2z/(o(ti—ti-1)) 2
z ~t/2
P{lréla.<x 1X (&) < :z:} < ]:[1 \/; /0 et'/2 gt

forevery 0 =ty <t; <ty <--- <tp, <1 and for every x > 0.

LEMMA 2. [11] Let {&, i = 1,2,---,n} and {n;, ¢ = 1,2,--- ,n}
be sequences of jointly standardized normal random variables with
covariance(§;, &;) < covariance (n;,7;), i # j. Then for any real num-
bers Uy, U2, 0y Uny

P{&J —<—u_7', ]:1’27 )n}s P{’Iyﬁu], .7=1’2) 7n}
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Small ball probabilities for Gaussian processes

THEOREM 1. Assume that o2(h) is concave on [0,1]. Then the fol-
lowing inequalities hold:

O P{sup 1XO< @)} < em(-017[7]),
@y P{oiltlgh | X ()] > a(:c)} > 0.17[2—]@(—0.17[2])
for every 0 < x < h with h < 1.

(ii)

P{os?glrl)—hoiggh(x(t +35) — X(s)) < a(:c)} < exp(—0.17 [%D

for every 0 < x < min{h,1 — h}, where [-] denotes the integer part.

Proof. (i) For any 0 < z < h with h < 1, it follows from Lemma 1
that

P{oigghlxw <o(e)} < P{ max |X(iz) <o)}

1<i <[h/ ]
[h/z] V20(z)/o(z)
2 / —t2/2 [h/]
< ud e dt = (28(v/2) — 1
ILyz ), (28(v2) - 1)

<om(-017 1]

where ®(y) = 715—1; A e~*/2dz. The inequality (i)’ immediately fol-
lows from the relation

l—-e 227 %, 2z20.

(ii) For any 0 < z < min{h,1—h}, put U; = X((i+1)z) - X (iz), i =
-, [(1=h)/z]. 1t follows from the relation ab = (a?+b%—(a—b)?)/2
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that, for l = |t — j| > 1,

covariance(U;, U;) = E(U;U;)
= E{X((z + 1)) X((5 + l)x)} - E{X((z + l)x)X(jx)}
— E{X(ix)X((j + 1)z)} + E{X (iz) X (jz) }

)
= {0+ 1)2) — 0?(2)) - (6%(12) - o*((1 - 1))}

<0,

because o?(h) is concave. In order to apply Lemma 2, set &; = U;/o(x)
in Lemma 2 and let 7; be independent standard normal random vari-
ables. From (1), covariance(§;,€;) < 0 = covariance(n;,n;), © # j.
Now applying Lemma 2, we have

P{ sup sup (X(t+s)—X(s)) < 0(:1:)}
0<s<1-h0<t<h

< P{ max U, < o(z)} = P{

max & < 1}
1<i<[(1~h)/z] 1<i<[(1=h) /2]

< P{ISiSI[I(l?—J—ch)/:c] < 1} - P{"l S Lo maemyel < 1}
= (3) " < em(-07 [F2H]). .

Let {X(t), 0 < t < 1} be a fractional Brownian motion of order
23 with 0 < 8 < 1 on the probability space (2,S, P), that is, let
{X(t), 0 <t <1} be an almost surely continuous, real-valued Gauss-
ian process on (2,8, P) with mean zero, X(0) = 0 and stationary
increments o0%(h) = E{X(t+h) - X({t)}) = h?, 0<t<t+h <1,
where 0 < 8 < 1. Then the concave condition in Theorems A and 1 is
satisfied only for 0 < 8 < 1/2. But the condition (2) in the following
Theorem 2 also contains the case that 0?(h) may not be concave. More
precisely, for some 8 < « in (2) with 1/2 < 8 < 1, the condition (2) is
stisfied, and 0?(h) = h?8(1/2 < B < 1) is convex on [0,1]. It is obvious
that (3) is also satisfied if 02(h) = h?4 for 1/2 < B < 1.
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THEOREM 2. Let 0%(x)/x?* be a quasi-decreasing function for some
a (0 < a < 1): concretely, suppose that there exists a constant Co with
0 < Cy < 3/4* such that

o*(z) o*(y)
(2) —EEE—SCO—:‘;E— for all (E>y>0.

Assume also that
3) 602(mz) + o%((m + 2)z) + o*((m — 2)z)
> 40%((m + 1)z) + 40*((m — 1)z)
for £ > 0 and 2 < m < (1/z) — 2. Then the following inequalities hold:

(i) P{ sup sup (X(t+s)—X(s)) < a(z)}
0<s<1-h0<t<h

< en(-[1E2){1- 20T
for every 0 < x < min{h,1 — h}.

(ii) P{ sup  sup (X(t+s)—X(s))§a(a:)}
0<t<1-h0<s<h

< eXP(— [-2%] {1 - <1>(2/\/3_-C’7)})

for every 0 < x < min{h,1 — h}.

Proof. The proof of (ii) is similar to that of (i). So we only prove
(i): Put & = X(iz) — X((¢i — 1)z) for 2 = 1,2,---,[(1 — h)/x], and
nj = &g — €251 for j =1,2,.-- ,[(1 — h)/2z]. Then we have, for i # j,

Enin; = E (€2i625 — €2i625—1 — 261825 + §2i-1825-1) -
Using the relation ab = (a? + b2 — (a — b)?)/2, we have

E€nita; = E{X(2z'a:)X(2ja:) ~ X(2i2)X((2j - 1))
~ X((2 — 1)2) X (25) + X ((2i — 1)z) X((25 - 1)9,-)}
= 3{~o%@ - jlo) + o*((2li - 31 + V)
+0%(|2( — §) - 1) — a(2li - jl=) },
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Besitojor = 3{~0*(2li — i1+ 1)2) + 0%(2li — j + 1fa)
+02(2li - jle) - (2l — 3l + 1) },
Bgirlis; = 3§ ~0*(2hi — 31~ 1)2) + 0*(2li - jlo)
+02(2hi = j— 1]2) — o*(2li - | - D) },
B 1621 = 5{~0*(2li = 3l2) + o2k — 3| + )2)

+02((2li - 4] - Do) - (@i - jlo) }.
Set m = 2|i — j| > 2. It follows from the condition (3) that

Enin; = ———;—{602(m:c) + 02((m + 2)z) + 02((m — 2)z)

- (402((m +1)z) + 40%((m — 1)1:))}
<o, 2<m<(1/z) -2

Using the condition (2), we have

E”I?' = Eﬁ%g — 2E(&25€25-1) + E&%,-_1
= 20%(z) — 2E{X (2jz) X ((2] — 1)z) — X (2jz)X((2] — 2)z)
— X((27 - x)X (25 — =) + X((25 —~ 1)2)X((2j - 2)=)}
= 40%(z) — 0%(2z) — 0%(0)
> (3 - Cod™)o?(z), 0<Co<3/4%,

and
En? <4o*(z) forj=1,2,---,[(1~h)/2z].
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It follows from Lemma 2 that

P{ sup sup (X(t+ s8) — X(s)) < a(m)}
0<s<1-h0<t<h

<P

(X(iz) - X((i - V2)) < 0(a) }
(€25 — &25-1) < 20(37)}

{1< <[(1 —h)/z)

< { max
1<5<[(1-h)/2z]

<Py i am \/Z;;yj'é’ s \/3%”@ )
< {a(2/v3=Com) )
conl - sanw@). q

From now on we study lower bounds of small ball probabilities. For
this purpose, we start with three lemmas that will be needed for the
proof of Theorem 3:

LEMMA 3. ([2], [10]) Let T be a parameter set and {Y (t), t € T}
be a Gaussian process with mean zero and finite variances. Then

P{sup Y@ ( )I <1,|Y(t)] < a:(to)}

teA

Y ()|
> P{|Y(to)| < a:(to)}P{:tstelg =) S 1}

for every ACT, z(t) >0, to € T and z(tp) > 0.

LEMMA 4. [7] Let {&, 1 < i < n} be jointly normal random
variables with mean zero and finite variances. Then, for every x > 0,

{1<,<n|zgil<z}>ﬂ¢—/ eV 2dy,

where p? = 35, |E&;]-

The following lemma is easily obtained by a slight modification of
the proof of Lemma 2.3 in Shao [7]:
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LEMMA 5. Let {Y(t), t > 0} be a Gaussian process with mean zero
and finite variance. Assume that there exists a nondecreasing function
u(h) on [0,1] such that
E{Y(t+h) =Y ()}’ <u?(h) forall 0<t<t+h<1.

Then we have

P{ sup [Y(¢)| <z +2e /ooou(ee;:z) dy}

0<t<h '
2 P{ e, ¥ ()| <<}

forevery R>1 and x > 0.

THEOREM 3. For h > 0, let o(h) be nondecreasing on [0,1]. Then
we have

P{Osslth)JX(t)l < o(z) + 6e /Ooo o(zeV") dy}

>en(-1){2(y7) -3}

for every 0 < x < h with h < 1. If, in addition, o%(h) is concave, then
the lower bound of (4) is equal to or greater than exp(—(1+ 0.87h)/x).

Proof. Take R =1/z in Lemma 5. Then we have

(4)

5 P{oggh|X(t)| <o(x)+ 26/0 o(zee ¥ )dy}

>e /e iz)| < :
>e P{ISI'L'I%&E%{/:::] | X (iz)| < a(:c)}

Applying lemma 4, we get

(h/<] 20(@)/ps |,
p < > -y°/2
{1<z<[h/a:] X (iz)] a(x)} H V2r /o ¢ W
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where
{h/x] h
Pt =3 IBX (i) - X ((i-1)2)) (X (j2) - X ((G-D=))], 1<i < [2]
j=1

Using the relation ab < (a? + b?)/2, we have

(h/=]
P <3 Y (BIX(z) ~ X(( - Do)} + B{X(ja) - X((G - D2))?)
j=1

- [t

Hence
<
P{ 1< e Th/a] X (#=)| a(m)}
[h/x] 20(z)/+/[h/z]o(x) y2/2
6 > - d
(6) 1_1 V2 / 4

- {savEm - 3" > (a5 - 1)

A combination of the above inequalities (5) and (6) yields

P{ sup |X(t)| < o(zx) + Ze/ o(ze-e V) dy}
0<t<h 0

-en(-2){o(a/2) -1}

Noting that, for every 0 < h < 1/3,

(7)

o(3h) = {EX?(3R)}!/?
= {EX?(R)}'/? + {E(X(2h) — X (h))2}1/2
+ {E(X(3h) — X(2h))*}/2
= 30(h)
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by the Minkowski inequality, we have
(8) o(z-e- e"yz) < 0(3.7:6_92) < 30(:66“”2) for y > 0.

Now the inequality (4) immediately follows from (7) and (8). If 02(h)
is concave, then the result is straightforward from [7]. a

From Theorem 3, we obtain the following corollary:

COROLLARY. Assume that o(z)/z® is nondecreasing on (0,1) for
some « > 0. Then the inequality

P{ sup, 1X(0)1 < Cont@)} 2 emo(-1) {2(2y/3 ) - 3}

holds for every 0 < x < h with h < 1, where C, =1 + 3ey/7/a.

Proof. If o(z)/z* is nondecreasing on (0,1) for some a > 0, then

/000 o(ze V") dy < o(z) [;oo eV dy = %}2\/%.

Hence, it follows from (4) that

P{ sup 1X ()| < Caa(z)}

0<t<
=P X o(z) [m
{OZ?Eh' B < ola) + 66_2—\/;}

o0
> P{ sup |X ()| < o(z) + +6e / o(ze=") dy}
0<t<h 0
1 z 1y h/=
> —_ Z Y-
—exP( z){@(2 h) 2
forevery0 <z < hwithh<1. O
Next we shall estimate upper bounds of another type of large devia-
tion probabilities, whose results are also essential to obtain the results

related to the iterated logarithm.
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Let D = {t st = (t1,--- yIN), @i <t; < b, i =1,2,--- ,N} be a
real N-dimensional parameter space. We assume that the space D has
the usual Euclidean norm || - || such that

N
It — sl =D (t: — si)2-
i=1

Let {X(t), t € D} be a real-valued separable Gaussian process with
EX(t) = 0. Suppose that

0<supEX(t)2=T%2<o00, I'>0,
teD

and
E{X(t) - X(s)}* < ©*(lIt — s])),

where ¢(-) is a nondecreasing continuous function such that

(9) /0 " (e V) dy < oo,

LEMMA 6. [1] Let {X(t), t € D} be given as in the above state-
ments. Then, for A >0,z > 1 and A > 2v/NIn2, we have

P{supX(t) >z{T+(2vV2+ 2)A/°° o(VNI2~V") dy}}
teD 0

<(4”+¢)II(

i=1

%y 1)6_13/2 ,
where m V n = max{m,n}, and

¥= Zexp{— —2"(— ~2N12)} < oo

n=1

219



S. H. Lee and Y. K. Choi

THEOREM 4. Let 0 < a < 1. For a fixed K > 0, let o(Kz) <
K¢eo(x) for every x > 0. Then for any small ¢ > 0 there exists a
positive constant C = C(e) depending only on € such that, for every
z >0,

@ Pl s X0 of)} < Comn(~(53) 5),

(ii) P{ sup sup |X(¢+ s)~ X(s)| >a(:c)}

0<s<1-h 0<t<h
— a2
SC(TVI)e ( (2+e)02§f13)

Proof. We prove only (ii). The proof of (i) follows the same method
as that of (ii). Let D = {(¢,s) : O<t<h0<s<1~h}bea
two-dimensional space. Set

X(t+s)— X(s)

Y(t7 S) = O'(h) ’ (t)s) € Da
e 20(v/3z)
o yA
o(z) = w270

where () is a nondecreasmg continuous function satisfying (9). It is
clear that

EY(t,s)=0, T'= sup EY(t,s)’=1 and
(t,s)eD

—s2]) + 02(Js1 — s2)
a2(h)

2 DM o?(V24/(t1 ~ t2)2 + (51 — 52)2 )

= 902(\/(51 ~12)2 + (51 — 82)%) .
For any small € > 0, there exists a small ¢ = c(€) > 0 such that

2 —
E{Y(th 31) - Y(t2,32)}2 < 20- (ltl tzl + jsl

(10) (2\/“+2)A/ (VBch2)dy< £,
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where A > 2v/2In2. Indeed, it follows from the assumption that for
any small € > 0 there exists a small ¢ = ¢(€) > 0 such that

00 . 00 —y? )
/ <p(\/§ ch 27¥ ) dy = / % dy < / 2(2c2'y2)°‘ dy
0 0

0 U(h)
o« VT _ €
= (2) Va2 = <3

Let o(z)/o(h) = 2(1 + (¢/8)), z > 1. From (10) and Lemma 6, we have

P? sup |Y(t,s)| >
{ o, el > 565}

< 2P{ sup Y(¢,s) > z{1+ (2V2 + 2)A/‘°° <p(\/§ ch 2_3’2) dy}}
0

(t,9)€D

<x(5 ) (50 vi) e

_ o?(z
co(S5tvr)em(-(2) 22).

where K is a constant and C = C(€). In the case of z < h, the result (ii)
is obvious, since the right hand side of (ii) is larger than one for C big
enough. O

3. An application

In this section we shall establish some results related t‘o the iterated
logarithm from the theorems in section 2.

Let {X(t), 0 <t < 1} be a fractional Brownian motion of order
28 with 0 < 3 < 1, i.e., {X(t), 0 <t < 1} is a real-valued Gaussian
process with mean zero, stationary increments, X (0) = 0 and o2(t) :=
EX?(t) = t* for some 0 < B < 1. When 8 =1/2, {X(t), 0 <t <1}
is a standard Wiener process.
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THEOREM 5. Let {X(t), 0 <t < 1} be a fractional Brownian mo-
tion of order 23 with 0 < 8 < 1. Then we have

X(t+s)— X(s)

i liminf su su a.s.
) h—>0 Ogssli)—-h 0<t15)h 0(0.16h/ log |log h|) —

for some 0 < #<1/2, and
(ii) liminf sup sup X(t+5) — X(s) a.s.

h—0 0<a<1-no<t<h 0(Ah/2log|loghl) ~

for some1/2 < 8 <1, where A=1—®(2/1/3—Cp4°) and 0< Cp <
3/48.
Proof. (i) From Theorem 1 (ii), we have, for any 0 < e < 1,

P{ sup sup (X(t+s)—X(s)) <o(z)(1- e)}
0<s<1-h0<t<h

< 2exp(—0.17h/z), O0<z<h,
where h > 0 is small enough. Choose

0.16h

$=W and h=e™, neN,

where N is a set of positive integers. Then we have

ZP{ sup sup (X(t+s)—X(s)) Sa(o'lﬁe—n)(l—e)}

0<s<1—e—"n 0<t<e—" logn

< 221; exp(—%logn) < 00.

So, the Borel-Cantelli lemma implies that

liminf sup sup X(t+35) - X(s) >1-¢ a.s.
n—~00 0<s<1—e-n0<t<e—n 0(0.16e"/logn)
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This gives the result (i).

(ii) In Theorem 2, let o?(t) = t2# for some B with 1/2 < < a < 1.
Then the conditions (2) and (3) of Theorem 2 are satisfied. It follows
from Theorem 2 (i) that, for any 0 < e < 1,

P{ ogilglrl)—h os<\t12h(X(t +3)—X(s)) <o(z)(1— e)}

h
< Comp(- 2 {1 3(a1/T=Go0) ),
where C is a constant and h > 0 is small enough. Choose

_ {(1-3(/V3= o)}
2log | log h|

and h=e™, neN.

Then we have
Z P{ sup sup (X(t+s) — X(s))

0<s<1—e~" 0<t<e ™
{1 - 8(2/v/3—-Cpd=)}e ™
Sa( 2logno )(1_6)}

1 — &(2/+/3 - CodP)
SC;e"p(H-@(z/\/ﬁ‘-T'O‘OZE)

So, the result (ii) follows from the Borel-Cantelli lemma. g

log n) < 00.

THOEREM 6. Let {X(t), 0 <t < 1} be a fractional Brownian mo-
tion of order 23 with 0 < 8 < 1. Then we have

i - | X ()]
L 1
® If?—?(l)lp oiltlgh o(h(2log|log )Y/ @2B)) —

(ii) limsup sup sup [X(t+ ) — X(s)] <1 as.
h—0  o<s<i-ho<t<h 0 (h{2(log(1/h) + log |log h|)} 1/(2A))

as.,
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Proof. (i) From Theorem 4 (i), it follows that for any small ¢ > 0
there exists a positive constant C = C(e) such that, for every z > 0,

P{aup, IX(0)> 0@} <Con(-7(5)")

Set = = h(2(1+¢€)log|logh|)}/?® and h = e ™, n € N. Then we have

s ole”™ o 1/(2B)
S P{, s X0 > (e (201 + ) logn)/)

1
<C) exp(——((2+ 2€)logn)) < oo.
zn: ( 2+¢€ )
By the Borel-Cantelli lemma, we have

limsup sup | X (@)
nooo o<t<e-n 0(€""(2logn)t/(20)) ~

This yields (i).

1 a.s.

The proof of (ii) is similar to that of (i): From Theorem 4 (ii), it
follows that for any small € > 0 there exists a positive constant C = C(e)
such that, for every z > 0,

P{ sup sup |X(t+s)— X(s)| > a(a:)}
0<s<1—h0<t<h
1 1 /z\28
<C= - =) ).
= ChexP( 2+e(h) )
Set = = h{2(1 + €)(log(1/h) + log|log h|)}}/* and h = e, n € N.

Then we have

ZP{ sup sup |X(t+s) — X(s)|

0<s<l—e" " 0<t<e~ "

>o(e {21+ €)(n+ logn)}l/(m))}
< CZe" exp(—é—_lrz{(Z + 2¢)(n + logn)}) < 00.

So, the result (ii) immediately follows from the Borel-Cantelli lemma.O)

224



1]
2]

(10]
(11]

(12]

Small ball probabilities for Gaussian processes

References

X. Fernique, Continuité des processus Gaussiens, C. R. Acad. Sci. Paris, t. 258
(1964), 6058-6060.

C. G. Khatri, On certain inequalities for normal distributions and their ap-
plications to simultaneous confidence bounds, Acta. Math. Statist. 38 (1967),
1853-1867.

J. Kuelbs and W. V. Li, Small ball estimates for Brownian motion and the
Brounian sheet, J. Th. Prob. 6 (1993), 547-577.

J. Kuelbs, W. V. Li and Q. M. Shao, Small ball probabilities for Gaussian pro-
cesses with stationary increments under Hélder norms, J. Th. Prob. 8 (1995),
361-386.

W. V. Li and Q. M. Shao, Small ball estimates for Gaussian processe under
Sobolev type norms, Preprint.

D. Monrad and H. Rootzén, Small values of Gaussian processes and functional
laws of the itereted logarithm, Prob. Th. Rel. Fields 101 (1995), 173-192.

Q. M. Shao, A note on small ball probability of a Gaussian process with sta-
tionary increments, J. Th. Prob. 6 (1993), 595-602.

Q. M. Shao, Bounds and estimators of a basic constant in extreme value theory
of Gaussian processes, Statistica Sinica 6 (1996).

Q. M. Shao and D. Wang, Small ball probabilities of Gaussian fields, Prob. Th.
Rel. Fields, 101 (1995).

Z. 8iddk, On multivariate normal probabilities of rectangles; their dependence
on correlations, Ann. Math. Statist. 39 (1968), 1425-1434.

D. Slepian, The one-sided barrier problem for Gaussian noise, Bell System
Tech. J. 41 (1962), 463-501.

M. Talagrand, The small ball problem for the Brownian sheet, Ann. Prob. 22
(1994), 1331-1354.

DEPARTMENT OF MATHEMATICS, COLLEGE OF NATURAL SCIENCES, GYEONGSANG
NATIONAL UNIVERSITY, CHINJU 660-701, KOREA.
E-mail: mathykc@nongae.gsnu.ac.kr

225



