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PRUFER v-MULTIPLICATION DOMAINS IN WHICH
EACH t-IDEAL IS DIVISORIAL

CHuL Ju HWANG AND GYu WHAN CHANG

ABSTRACT. We give several characterizations of a TV-PVMD and
we show that the localization R[X; S]y, of a semigroup ring R[X; S|
is a TV-PVMD if and only if R is a TV-PVMD where N, = {f €
R{X]|(A¢)y = R} and S is a torsion free cancellative semigroup with
Zero.

1. Introduction

Throughout this paper R will denote a commutative integral domain
with identity having quotient field K. For a nonzero fractional ideal A of
R, A, = (A"))"! and A; = U{[,|I is a finitely generated subideal of A}.
If A, = A (resp. A; = A) then A is said to be divisorial (resp. a t-ideal).
Since A C A; C A,, each divisorial ideal is a t-ideal. The fractional
ideal A is said to be quasi-finite if A~! = J~! for some finitely generated
subideal J of A. An integral domain R is said to be a v-domain if every
nonzero finitely generated ideal of R is v-invertible. An integral domain
R is called a Priifer v-multiplication domain (PVMD) if every finitely
generated fractional ideal I of R is t-invertible, i.e., (II7!), = R. Thus a
PVMD is a v-domain. It is well known that R is a PVMD if and only if
for each maximal t-ideal M of R, Ry is a valuation domain [3, Theorem
5]. By an overring of R we mean a ring between R and K. A valuation
overring V of R is called essential if V = Rp for some prime ideal P of
R. An integral domain R is called essential if it can be expressed as an
intersection of essential valuation overrings of itself.
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We have several characterizations of a Krull domain (see [1], [7], [9)).
One of them is that a Krull domain is a generalization of a Dedekind
domain in terms of t-invertibility, i.e., each nonzero fractional ideal of
R is t-invertible [9, Theorem 3.6]. In [7], Houston and Zafrullah defined
a TV-domain ; an integral domain in which each ¢-ideal is divisorial.
Note that a Mori domain is an integral domain which satisfies ACC
on divisorial ideals. It follows that in a Mori domain each t-ideal is
divisorial. Thus a Mori domain is a TV-domain. We know that an
integral domain R is a Krull domain if and only if R is a Mori domain
and R is a PVMD [9, Theorem 3.2]. Thus a PVMD which is also a
TV-domain is a naturial generalization of a Krull domain. Throughout
this paper, the term a TV-PVMD will denote a PVMD which is also a
TV-domain.

In section 2, we study an independent ring of Krull type and using
this we give a new characterization of a TV-PVMD. We prove in section
3 that R[X; S]y, is a TV-PVMD if and only if R is a TV-PVMD where
S is a torsion free cancellative semigroup with zero and N, = {f €
RIX; S1|(A7). = R}.

In general, our terminology and notation will follow that given in (1,
2]. The reader is referred to those for terms and notations not defined in
this paper.

2. A PVMD which is a TV-domain.

Let R be an integral domain. A maximal ¢-ideal of R is a proper t-
ideal of R which is maximal among proper t-ideals of R. We denote the
set of maximal ¢-ideals of R by t-MaxR. It is easy to see by Zorn’s lemma
that each maximal t-ideal is a prime ideal and {-MaxR is not empty. In
[4], Griffin introduced a ring of Krull type; an integral domain which is
a locally finite intersection of essential valuation overrings, equivalently
a PVMD in which each nonzero element belongs to only finitely many
maximal t-ideals. Thus a ring of Krull type is a PVMD. But a PVMD
need not be a ring of Krull type (for example, an almost Dedekind domain
which is not Noetherian {1, Example 42.6]). The ring of Krull type is an
independent ring of Krull type if each prime ¢-ideal of R lies in a unique
maximal ¢-ideal.
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EXAMPLE 2.1. Let @ (resp. Z) be the ring of rational numbers (resp.
integers). Let Q[|X|] = @ + XQ[| X|], let Dy = Z5) + XQ[|X]], and let
1. D; and D, are valuation domains on Q[| X |][+] [1, Ex.13, page 203],
2. D = DN Dy = Zpy N Zz + XQ[|X]] is a Priifer domain with
maximal ideals P, = (2Z(9)+XQ[| X |])ND, P, = (3Z3+XQ[|X|))N
D [1, Theorem 22.8],
3. Dp, = Dy, Dp, = D, [1, Ex.13, page 203].
Let v; be the valuation on K associated with Dp, i = 1,2. Then there
is no element f of Q[|X|][%] such that v;(f) = v1(X) and v,(f) = 0.

Example 2.1 shows that the approximation theorem for Krull domains
[1, Theorem 44.1] cannot be generalized to a ring of Krull type. Thus (1,
Ex. 1, page 553] fails. But we can generalize the approximation theorem
for Krull domains to an independent ring of Krull type. Its proof is an
easy adaptation of the proof of [1, Theorem 44.1], and is hence omitted.

THEOREM 2.2. (cf. [1, Theorem 44.1]) Let R be an independent ring
of Krull type which is not its quotient field K. Let t-MaxR = {Py}ea-
For each ), let vy be the valuation on K associated with Rp, with value
group Gy. If {v1,vy,...,v,} is a finite subset of {v)}iea and if g; € Gj,
i=1,2,...,n € A, there exists an element t € K such that v,(t) = g; for
i=1,2,...,nandvy(t) >0 for A\ e A—{1,2,...,n}.

LEMMA 2.3. (cf. [5, Lemma 5.2}) If V is a valuation domain with
maximal ideal M, the followings are equivalent.

1. Each nonzero ideal of V is divisorial.

2. M is principal.

3. M is divisorial.

Proof. (1)<= (2) 5, Lemma 5.2].
(2) = (3) Clear.
(3) => (2) Since M, =M, M ' D V. Forze M-V, M ' DV +aV
and M = (M) C(V+2zV)' CV. Since M is the maximal ideal of
V,M=V+2zV)!'=VnNz V. Sincex ¢ V,z' € M. SoM =z"'V
is principal (cf. [5, Theorem 5.1}). O

REMARK. If G(V) is complete, then every divisorial ideal of V is
principal. (Proof. This follows from the definition of “complete” and [1,
Theorem 34.1]).
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LEMMA 24. (cf. [7, Corollary 1.8]) If a maximal t-ideal P of an inte-
gral domain R is divisorial, then PRp is divisorial.

Proof. Since P, = P, P~! D R. So we can find an element 7€ P'-R
where a,b € R. Hence P = (b) : a = {r € Rjra € (b)} and PRp = bRp :
aRp. So PRp is divisorial. O

In the proof of the following result, we use a *-operation. The reader
may consult section 32 and section 34 of [1] for the definition and prop-
erties of *-operation.

THEOREM 2.5. (cf. [1, Theorem 44.2]) Let R is an independent ring
of Krull type which is not its quotient field K, let { P\} ea = t-MaxR, and
let F — F,, be the w-operation on R induced by the family {Rp, }sea
of valuation overrings of R. If each P\Rp, is divisorial, then F,, = F,, for
each non-zero fractional ideal F' of R.

Proof. For a fractional ideal F' of R, there is a nonzero element d of
R such that dF is an integral ideal of R. Since F is divisorial if and
only if dF is divisorial, it is sufficient to consider an integral ideal A
of R. Since F — F,, is a #-operation on R, A, C A,. Conversely, for
z € R—A,, Ay, =NARp, = N(ARp,NR) =N} ,(ARpNR) for some finite
subset {1,...,n} C A. For convenience, we may assume that z ¢ ARp,.
Now Lemma 2.3 and Lemma 2.4 yield that each nonzero ideal of Rp, is
divisorial. Since ARp, is a divisorial ideal, there exists an element y € R
such that ARp, C yRp, C zRp,. So vi(z) < g1 = vi(y) < vi(a) for each
a € ARp,. Similary, we can find y; € R such that ARp, C y;Rp, C Rp,
fori=2,...,n. Let v;(y;) = g > 0 for i = 2,...,n. By Theorem 2.2,
there exists an element ¢ € K such that v;(t) = —g; fori = 1,2,...,n and
up(t) > 0for A € A—{1,...,n}. Sovi(at) = vy(z)+v,(t) = »1(z)—9g1 < 0
and hence zt € Rand z & (¢7!). But for a € A, v;(at) = v;(a)—g; > 0 for
i=1,...,n and vy(at) = vy(a) + vA(t) > 0 for A€ A—{1,...,n}. Thus
at€ Randa € (t!) and A C (¢t7!). Hence z ¢ A, and 4, = A,. O

We next give an example which shows that in Theorem 2.5, the as-
sumption that each PyRp, is divisorial is necessary.

ExAMPLE 2.6. Let {(V;, M;)}~, be a set of valuation domains on the
field K such that if ¢ # j, V;, V; are independent and M is not principal.
Let R = N,V;, then R is a Priifer domain with MaxR = {M; "R = P}
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[1, Theorem 22.8]. Then R is an independent ring of Krull type but not
a TV-domain. Since M; is not divisorial, P, is not divisorial. Hence
(Pl)v = R but (Pl)u) = n?ZIPIRPi = Pl-

LEMMA 2.7. (cf. [8, Theorem 3.5]) An integral domain R is a TV-
PVMD if and only if R is integrally closed and I, = Nperlp for every
nonzero ideal I of R where I is the set of maximal t-ideals of R.

Proof. (=) Since R is a PVMD, R is integrally closed and I; =
Nperlp (|6, Proposition 0.1], [8, Theorem3.5]). So I, = Nperlp.

(<) Since Nperlp C I [3, Proposition 4] and I; C I, I, = I, =
Nperlp. So R is a TV-PVMD |8, Theorem 3.5]. O

PROPOSITION 2.8. (cf. [1, Ex. 3, page 554]) Let R be a PVMD. If a
maximal t-ideal P of R is divisorial, then P is t-invertible. Moreover, if
P is a maximal ideal, P is invertible.

Proof. Let P be a maximal t-ideal of R. Since (P~!)~'= P, RC P71
Sothereis anelementz € P"!—R. SoRC R+rRC P land P= P, C
(R+zR)™! C R. Since P is a maximal ¢t-ideal, P = (R+zR)~!. Since R is
a PVMD, (PP}, = ((R+Rz):(R+Rz)™), = (R+Rz)(R+Rz)™ ), =
R. Thus P is t-invertible and PP~! 2 P. Hence if P is maximal,
PpP'=R O

The following lemma appears in the proof of [10, Theorem 3.2].

LEMMA 2.9. Ifan integral domain R is a TV-PVMD, then each nonzero
fractional ideal of R[X|y, is divisorial where N, = {f € R[X]|(Af), =
R}.

Proof. Since R is a PVMD, every ideal of R[X]y, is extended from R
[8, Theorem3.1]. Thus if A is an ideal of R[X]y,, there is an ideal I of
R for which A = I[X]y,. Since R[X]y, is a Priifer domain [8, Theorem
3.7], A is a t-ideal of R[X]y,. Thus I is a t-ideal of R. By assumption, |
is a divisorial ideal of R and hence A is a divisorial ideal of R[X]y,. O

We give a characterization of a TV-PVMD (cf. [7, Theorem 3.1]).

THEOREM 2.10. Let R be an integrally closed domain with quotient
field K, then the followings are equivalent.

1. R is an essential TV-domain.
2. R is a v-domain which is a TV-domain.
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R is a TV-PVMD.

Each nonzero ideal of R|X|y, is divisorial.

5. R is an independent ring of Krull type whose maximal t-ideals are
quasi-finite (and so t-invertible).

6. There is a family {P,},ca of prime ideals of R such that

(a) Rp, is a valuation domain such that P,Rp, is divisorial.

(b) R =NyecaRp,.

(c) Each pair of {Rp,}aca are independent.

(d) Each nonzero element of R belongs to only finitely many P,.

Proof. (1) = (2) [9, Lemma 3.1].

(2) = (3) If A is a finitely generated fractioal ideal of R, (AA7!), =
(AA7!); = R. Hence R is a PVMD.

(3) = (1) Clear.

(3) = (4) Lemma 2.9.

(4) = (5) If Q is a prime ideal of R which is contained in a maxi-
mal t-ideal, Q[X]y, is a proper prime ideal of R[X]y,. Since each prime
ideal of R[X]y, is contained in a unique maximal ideal [5, Theorem 2.4]
and {P[X]n,|P € t -MaxR}=Max(R[X]n,) [8, Proposition 2.1}, Q is con-
tained in a unique maximal ¢-ideal of R. Since R[X]y, is a Priifer domain
[5, Theorem 5.1], Rp = R[X]pix) N K = (R[X]n,)px)s, N K is a valua-
tion domain for each P € t-MaxR. Since R[X]y, = N(R[X]n,)Pix)y, =
N(R[X]px)), R =NRp. [5, Theorem 2.5 and Theorem 5.1] show that R
is an independent ring of Krull type.

(5) => (6) Let t-MaxR = {Pr} ea. Then {P)}ca satisfies the condi-
tions stated in (6).

(6) = (3) Since R is a ring of Krull type, R is a PVMD. If M is a
maximal t-ideal, Ry = N(Rp,)s = Rp, for some P, where S = R—M. So
M = P,. For P € {P,}aca, P C P, =NPRp, = PRpNR = P where the
first equality follows from Theorem 2.5. Thus P is a t-ideal and { P, }4ca
is the set of maximal ¢-ideals. By Lemma 2.7, R is a TV-domain. 0

REMARK. In [10, Theorem 3.2], B.G.Kang proved the PVMD ver-
sion of [5, Theorem 5.1] which shows that 3 and 5 of Theorem 2.10 are
equivalent.

Ll

ExAMPLE 2.11. If a domain V is an n-dimensional discrete valuation
domain, then V is a TV-PVMD. But if n > 1, V is not a Krull domain.
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3. Semigroup Ring over a TV-PVMD

Throughout this section, S denotes a torsion free cancellative semi-
group with zero. It is well known that S admits a total order < compat-
ible with the semigroup structure. Thus each element of the semigroup
ring R|X; S] can be uniquely expressed as the form f = aoX* + a; X* +
-+-+a,X* where a; € Rwitha, #0and s; € S with sg < 51 <--- < s,.
Let degf = s, and A; the ideal of R generated by the coefficients of f.
Let N, = {f € R[X; S]|(Af)» = R}, then if R is integrally closed, using
[11, Proposition 5.1.4], we can show that N, is a multiplicative closed
subset of R[X; S] and Max(R[X; S]n,) = {P[X; S]n,|P € t-MaxR}.

Using [11, Proposition 5.1.4] instead of [1, Propostition 34.8] in the
proof of (8, Proposition 2.2, we have the following results.

LeEMMA 3.1. (cf. [8, Proposition 2.2]) Suppose that R is integrally
closed. Let T be a multiplicative closed subset of R[X; S| contained in
N, = {f € R[X; S]|(Af), = R}. Let I be a nonzero fractional ideal of
R. Then

L (I[X; S]r)™! = I"'[X; S]r.

2. (I[X, S]T)v = IU[X; S]T

3. (I[X; Slr). = LLX; Slr.

COROLLARY 3.2. (cf. [8, Corollary 2.3]) Let I be a nonzero ideal of
R. Then

L. (I1X; S])y = L[X; S, (I1X; S]): = L[X; 5.

2. (I(X; 8)), = L(X; S), (I(X; 5)): = L(X; 5).

3. (I[X; S]w,)o = L[X; SN, (I[X; S]w, )e = L[X; S,

The following theorem generalizes Lemma 2.9 to a semigroup ring

R(X; S].

THEOREM 3.3. Let N, = {f € R[X;S]|(Af), = R}. Then R[X;S|n,
is a TV-PVMD if and only if R is a TV-PVMD.

Proof. (=) Corollary 3.2.(3) shows that P[X; S|y, is a maximal ¢-
ideal of R[X; S], for each maximal ¢-ideal P of R. So (R[X; S|n,)px;sin,)
R[X; S]pix;s) is a valuation domain. So Rp = R[X; S]px;s) N K is a val-
uation domain. Hence R is a PVMD 3, Theorem 5]. If A is a t-ideal of
R, Ay[X; S]n, = (A[X; SN, )e = (A[X; S]w,)e = A X; SN, = AIX; S,
Thus A = A, and hence R is a TV-domain.
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(<) Since Rp is a valuation domain for each P € t-MaxR,
(RIX; SIn,) pixsiy, = RIX; Slpixss)

is a valuation domain. Since Max(R[X; S]n,)={P[X; S]n,|P € t-MaxR},
R[X; S]n, is a Priifer domain. So each nonzero ideal of R[X; S|y, is a
t-ideal. By Corollary 3.2 and the proof of Lemma, 2.9, each nonzero ideal
of R[X;S]n, is divisorial since each ideal of R[X;S]y, is extended from
R. Hence R[X; S|y, is a TV-PVMD. O

COROLLARY 3.4. With the notation of Theorem 3.3, R[X; Sy, is a
PID if and only if R is a Krull domain.

Proof. (=) Since R[X; S]y, is a PID, R[X; S]y, is a Krull domain.
So R = R[X; S|y, N K is a Krull domain.

(«=) Since { P[X; S|n,| P € t-MaxR} is the set of nonzero prime ideals
of R[X; S]n,, we only need to show that for each P € t-MaxR, P[X; S]n,
is principal. Since (P[X; S]n,)(P7YX; S]n,) =(PP7Y)[X; S]n, = R[X; S|~
P[X; S]n, is invertible and so P[X; S|y, = (f1,- .., fa)R|X; S]n, for some
elements fi,..., f, € P[X;S]. Let

f=hA+ X9+ fgl+m+'~~+gn_1+(n—1)g

where g;,g € S with g; = degf; and g > 0. Since Ay C Ay, AyRp C
A¢Rp for each P € t-MaxR.

Since Rp is a valuation domain, (R[X; S]w,)rix;siy, = B[X;S]pix.s) is
a valuation domain. Thus (P[X;S]n,)pix;sy, =fRIX; S]px;s) is locally
principal and hence P[X; S|y, = fR[X; S]n, is globally principal. O

EXAMPLE 3.5. Let S be the set of nonnegative rational numbers, and
let I be the ideal of the semigroup ring R[X;S] generated by {X9|g €
S,g > 0}. Then I is a t-ideal but not a divisorial ideal. So R[X;S] is
not a TV-domain.

We know that R is a TV-PVMD if and only if R[X] is a TV-PVMD
([7, Proposition 4.6] and (8, Theorem 3.7]). Example 3.5 shows that this
cannot be generalized to a semigroup ring.

Let G be a group, g an element of G. We say that g is of type
(0,0,0,...) if the set M = {n € Z*|nz = g for some z € G} is finite,
where Z7 is the set of positive integers. It is known [2, Theorem 15.6]
that R[X; S] is a Krull domain if and only if R is a Krull domain, S is a
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Krull monoid and every element of a maximal subgroup of S is of type
(0,0,0,...).

COROLLARY 3.6. (cf, [2, Theorem 15.6]) Let S be a Krull monoid
such that each element of a maximal subgroup of S is of type (0,0,0,...).
Then the semigroup ring R(X; S| is a TV-PVMD if and only if R is a
TV-PVMD.

Proof. (=) If I is a t-ideal of R, then I[X;S] is a t-ideal of R[X; S].
Thus I[X; 5] is also a divisorial ideal of R[X; S| and hence I is a divisorial
ideal of R. For each P € t-MaxR, R[X; S]pix;s) is a valuation domain
since P[X; 8] is a prime t-ideal of R[X; S]. Thus Rp = R[X; S]pix;5iN K
is a valuation domain and hence R is a PVMD.

(<=) It is clear that R[X;S] = K[X;S) N R[X; S]y,. Since K[X; 5]
is a Krull domain [2, Theorem 15.6] and R[X; S]n, is a TV-PVMD, by
Theorem 2.10 R[X;S] is a TV-PVMD. O
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