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A LIOUVILLE-TYPE THEOREM
FOR COMPLETE RIEMANNIAN MANIFOLDS

SooN MEEN CHoOI, JUNG-HWAN KWON AND YOUNG JIN SUH

ABSTRACT. The purpose of this paper is to give a theorem of Liouville-
type for complete Riemannian manifolds as an extension of the The-
orem of Nishikawa [6)].

1. Introduction

First we consider the most popular Maximum Principle. Let U be
an open connected set in an m-dimensional Euclidean space R™ and
{z7} a Euclidean coordinate. We denote by L a differential operator
defined by

)
OxtOzI oz’

where @/ and & are smooth functions on U for any indices. When
the matrix (a*/) is positive definite and symmetric, it is called a second
order elliptic differential operator. We assume that L is an elliptic
differential operator. The Maximum Principle is explained as follows:

MAXIMUM PRINCIPLE.
For a smooth function f on U if it satisfies
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and if there exists a point in U at which it attains the maximum, namely,
if there exists a point zo in U at which f(zo) 2 f(z) for any point z in
M, then the function f is constant.

In Riemannian Geometry, this property is reformed as follows. Let
(M, g) be a Riemannian manifold with the Riemannian metric g. Then
we denote by A the Laplacian associated with the Riemannian metric
g. A function f is said to be subharmonic or harmonic if it satisfies

Af20 or Af=0.

The maximum principle on Riemannian manifolds is as follows:

MAXIMUM PRINCIPLE.

For a subharmonic function f on a Riemannian manifold M if there
exists a point in M at which it attains the maximum, then the function
f is constant.

This property is to give a certain condition for a subharmonic func-
tion to be constant. When we give attention to the fact relative to these
Maximum Principles, we see the classical theorem of Liouville.

LIOUVILLE’S THEOREM.

(1) Let f be a subharmonic function on R?. If it is bounded, then
it is constant.

(2) Let f be a harmonic function on R™(m 2 3). If it is bounded,
then it is constant.

We are interested in Riemannian analogues of Liouville’s theorem.
Compared with these last two theorems we give attention to the fact
that there is an essential difference between base manifolds. In fact, one
is compact and the other is complete and noncompact. We consider here
a family of Riemannian manifolds {(M, g)}. At the global situation it
suffices to consider about the family of complete Riemannian manifolds.
Of course, the subclass of compact Riemannian manifolds

{(M, g) : compact Riemannian manifolds}
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is a subset of the family of complete Riemannian manifolds
{(M, g) : complete Riemannian manifolds},

since a compact Riemannian manifold is complete. However we must
notice the difference between these two classes is very big in the certain
sense. As is asserted by Gromov (5], we can say that almost all complete
Riemannian manifolds are noncompact. So we are interested in the
Riemannian analogues of Liouville’s theorem. And moreover we have
several essential problems for complete and noncompact Riemannian
manifolds in Mathematics and in Physics. For example, in Relativity
Theory one of important problems which is closely related to Riemann-
ian Geometry is to classify codimension one space-like foliations with
fibers of constant mean curvature in a 4-dimensional Minkowski space.

In this situation these fibers are complete and noncompact. Thus it
is interesting to consider whether or not the Maximum Principle holds
on a complete and noncompact Riemannian manifold or to construct
the Maximum Principle on a complete Riemannian manifold. The Max-
imum Principle on a complete Riemannian manifold is usually called
Generalized Mazimum Principle.

As is already stated, each of these Maximum Principles plays an
important role in each branch of Mathematics. Actually Generalized
Mazimum Principles which are later introduced are also important
properties similar to the Maximum Principle in a compact Riemannian
manifold or more important ones than that.

In particular, a similar property on a complete Riemannian manifold
was treated by Nishikawa [6], who determined space-like hypersurfaces
in a Lorentz space. His Liouville-type theorem in a complete Riemann-
ian manifold says

THEOREM A. Let M be a complete Riemannian manifold whose
Ricci curvature is bounded from below. If a C%-nonnegative function f
satisfies

(1.1) Af>2f?,
where A\ denotes the Laplacian on M, then f vanishes identically.

The purpose of this paper is to prove the following Liouville-type
theorem in a complete Riemannian manifold similar to Theorem A and
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to give another proof of Nishikawa’s theorem. In this note, the main
theorem is as follows:

THEOREM. Let M be a complete Riemannian manifold whose Ricci
curvature is bounded from below. If a C2-nonnegative function f sat-
isfies

(1.2) Afzeof™,

where cg is any positive constant and n is any real number greater than
1, then f vanishes identically.

The present authors would like to express their sincere gratitude to
the referee for his valuable comments.

2. Preliminaries

First of all, let us introduce a Generalized Mazimum Principle due
to Omori [7) and Yau [9]. This is slightly different from the original
one.

THEOREM 2.1. Let M be an n-dimensional Riemannian manifold
whose Ricci curvature is bounded from below on M. Let G be a C?-
function bounded from below on M, then for any € > 0 there exists a
point p such that

(2.1) IVG(p)| <€, AG(p) > —€ and infG+e> G(p).

3. Proof of the Theorem

In this section we prove the Theorem stated in the Introduction.
First of all, in order to prove our Theorem, we want to verify the
following Theorem 3.1. Then our Theorem is directly obtained as a
corollary of this property and hence Nishikawa’s Theorem [6] is also a
direct consequence of this theorem, which means that it gives another
proof of Nishikawa’s one.
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THEOREM 3.1. Let M be a complete Riemannian manifold whose
Ricci curvature is bounded from below. Let F' be any formula of the
variable f with constant coefficients such that

F(fy=cof"+ef" 1+ +euf"* + ey,

wheren > 1, 1> n—k > 0 and ¢ > cx41. If a C*-nonnegative function
f satisfies

(3.1) Af2F(f),
then we have
(3.2) F(f1)<0,

where f; denotes the supermum of the given function f.

Proof. From the assumption there exists a positive number a which
satisfies

ck+1 < a”cop.

For the constant a given above the function G(f) with respect to the
1-variable f is defined by (f + a) = , where n is the maximal degree of
the function F. Then it is easily seen that G is the C2-function so that
it is bounded from above by the positive constant a* and bounded
from below by 0.

By the simple calculation we have

(3.3) VG = -2 1G#‘-IVf,

and then we get

n+1

AG = ”G—t Af,

G741 VGVf+

hence we get by using the above equation (3.3)

n+1

(3.4) DeREAf = GAG - — |VG|2
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Since the Ricci curvature is bounded from below by the assump-
tion and the function G defined above satisfies the condition that it is
bounded from below, we can apply the Theorem 2.1 to the function G.

Given any positive number € there exists a point p at which it satisfies
(2.1). From (3.1) and (3.4) the following relationship at p

n+12

(3.5) T e

—eG(p) -

can be derived, where G(p) denotes G(f(p)). Thus for any convergent
sequence {€,,} such that ¢,, > 0 and e—0 (m—o0), there is a point
sequence {p,,} so that the sequence {G(pn,)} converges to Go = inf G
by taking a subsequence, if necessary, because the sequence is bounded
and therefore each term G(p,,) of the sequence satisfies (2.1). From
the definition of the infimum and (2.1) we have G(p,,)—Go = infG
and hence f(pm,)— f1 = sup f, according to the definition of G and the
assumption n > 1.
On the other hand, it follows from (3.5) we have

1-n 2n_ n+1l
= ~€mG(pm) — —— €,

and the right side of the above inequality converges to 0, because
the function G is bounded. By choosing the constant a it satisfies
ck+16~" < ¢g. Accordingly, there is a positive number 4 such that
Uit PR Y Pyt
2 k+1 9 <,

where ¢y is the constant coefficient of the maximal degree of the function
F. So for a given such a § > 0 we can take a sufficiently large integer
m such that

(3.6)

= Glom) P F(f(pm) > =,

where we have used the assumption (3.1) of Theorem 3.1 and (3.6). So
this inequality together with the definition of G(p,,) yield

1) F(f(om) < =227 + @) (pm)"™ ,
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ASSERTION. The range of the solutions of the inequality with 1-
variable 95

n—1

g(z) = F(z) -

(z+a)" <0
is bounded.

Proof. Since the constant coefficient ¢g — ;2:‘5—1 of the maximal degree
of the function G is positive by the definition of the constant 4, we
easily see that lim,_, g(z) = oco. Moreover, we get

2 n
é
— 1a <0,
by the definition of §, which implies that there exists a root z; such that
g(z1) = 0. This implies that the supremum of the solution of g(z) =0
is bounded. It means that the set of the numbers which satisfy the
inequality g(z) < 0 is bounded. Namely, we have our assertion. O

9(0) = cr41 —

The inequality (3.7) and the above Assertion show that the set
{f(pm)} is bounded. Thus the infimum of G satisfies Go#0 by the
definition of the function G and hence the inequality (3.6) implies that
limsup Af(pm)<0. This means that

F(f1)<0

by the assumption (3.2) of Theorem 3.1. Now we have completed the
proof of Theorem 3.1.

Proof of the Theorem. Assume that
F(f) = cof", >0

Then we get F(f1)<0. Since the function f is nonnegative by the
assumption, we see that f; is non-negative, namely we have

f1>0.
Hence we get
f 1 = Sup f =0,
which means that the function f vanishes identically. This means that
the proof of our Theorem is completed. (]
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REMARK 1. Suppose that a nonnegative function f satisfies the con-
dition (1.2). We can directly yield

V= (n-1)f"?V/,

A =(n =D -2)f" VIV + (n - 1) 2ATL
We define a function h by f*~1. If n>2, then it satisfies

AR>(n — 1)coh?.

Thus concerning the Theorem in the case where n>2, the condition
(1.2) is equivalent to the following

Af201f2,

where c; is a positive constant. Namely, Theorem 3.1 is only essential
in the case where 1 <n < 2.

- REMARK 2. In the proof of the Theorem of Nishikawa [6], the con-
dition n = 2 is essential.

REMARK 3. When n = 1 and the function f is bounded from above,
the third author [8] has proved that the Theorem also can be estab-
lished. But until now without any assumption on the function f we do
not know whether or not our Theorem holds in the case n = 1.
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