AN EXTENSION OF THE FUGLEDE-PUTNAM THEOREM TO p-QUASIHYPONORMAL OPERATORS

MI YOUNG LEE AND SANG HUN LEE

ABSTRACT. The equation AX = BX implies $A^*X = B^*X$ when A and B are normal (Fuglede-Putnam theorem). In this paper, the hypotheses on A and B can be relaxed by using a Hilbert-Schmidt operator X: Let A be p-quasihyponormal and let B^* be invertible p-quasihyponormal such that AX = XB for a Hilbert-Schmidt operator X and $|||A^*|^{1-p}||\cdot|||B^{-1}|^{1-p}|| \le 1$. Then $A^*X = XB^*$.

1. Introduction

Let \mathcal{H} be a separable complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . An operator $T \in \mathcal{L}(\mathcal{H})$ is called normal if $T^*T = TT^*$, hyponormal if $TT^* \leq T^*T$, p-hyponormal if $(T^*T)^p - (TT^*)^p \geq 0$ for p > 0 (see [7]), quasihyponormal if $T^*(T^*T - TT^*)T \geq 0$ and p-quasihyponormal if $T^*((T^*T)^p - (TT^*)^p)T \geq 0$ for p > 0. If p = 1, then T is quasihyponormal and if $p = \frac{1}{2}$, then T is semi-quasihyponormal. It is well known that a p-quasihyponormal operator is a q-quasihyponormal operator for $q \leq p$. But the converse is not true in general (see [1], [7] and [8]).

The familiar Fuglede-Putnam theorem is as follows (see [4] and [6]):

THEOREM A. If A and B are normal operators and if X is an operator such that AX = XB, then $A^*X = XB^*$.

S. K. Berberian[2] relaxes the hypotheses on A and B in Theorem A at the cost of requiring X to be Hilbert-Schmidt class. Recently, H. K.

Received June 25, 1997. Revised November 5, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 47B20.

Key words and phrases: p-hyponormal, p-quasihyponormal, Hilbert-Schmidt operator.

This paper was supported in part by BSRI-97-1401 and TGRC-KOSEF.

Mi Young Lee and Sang Hun Lee

Cha[3] showed that the hyponormality in the result of Berberian[2] can replaced by the quasihyponormality of A and B^* under some additional conditions.

In this paper, we will introduce p-hyponormal operators and show that the quasihyponormality of A and B^* can be replaced by the pquasihyponormality of A and B^* .

2. Main Results

In this paper, let 0 . Without loss of generality, we mayassume that $p = 2^{-n}$ for some integer $n \ge 1$.

Let T be an operator in $\mathcal{L}(\mathcal{H})$ and let $\{e_n\}$ be an orthonormal basis for \mathcal{H} . We define the Hilbert-Schmidt norm of T to be

$$||T||_2 = (\sum_{n=1}^{\infty} ||Te_n||^2)^{\frac{1}{2}}.$$

This definition is independent of the choice of basis (see [4]). If $||T||_2$ ∞ , then T is said to be a Hilbert-Schmidt operator and we denote the set of all Hilbert-Schmidt operator on \mathcal{H} by $\mathcal{B}_2(\mathcal{H})$. Then we have the following:

THEOREM 1 [4].

- (1) The set $\mathcal{B}_2(\mathcal{H})$ is a self-adjoint ideal of $\mathcal{L}(\mathcal{H})$. (2) If $(A,B) = \sum_{i=1}^{\infty} (Ae_i, Be_i) = tr(B^*A) = tr(AB^*)$ for A and Bin $\mathcal{B}_2(\mathcal{H})$, then (\cdot,\cdot) is an inner product on $\mathcal{B}_2(\mathcal{H})$ and $\mathcal{B}_2(\mathcal{H})$ is a Hilbert space with respect to this inner product, where $\{e_i\}$ is any orthonormal basis for \mathcal{H} and $tr(\cdot)$ denotes the trace.

For each pair of operators A and B in $\mathcal{L}(\mathcal{H})$, an operator \mathcal{J} in $\mathcal{L}(\mathcal{B}_2(\mathcal{H}))$ is defined by

$$\mathcal{J}X = AXB.$$

Evidently $||\mathcal{J}|| \leq ||A|| \cdot ||B||$. And the adjoint of \mathcal{J} is given by the formula $\mathcal{J}^*X = A^*XB^*$ (more precisely, see [2]). In particular, if A and B are both positive, then $\mathcal J$ is positive and $\mathcal J^{\frac{1}{2}}X=A^{\frac{1}{2}}XB^{\frac{1}{2}}$, as one sees from the calculation

An extension of the Fuglede-Putnam theorem

$$(\mathcal{J}X,X) = tr(AXBX^*) = tr(A^{\frac{1}{2}}XBX^*A^{\frac{1}{2}})$$

 $\dot{} = tr((A^{\frac{1}{2}}XB^{\frac{1}{2}})(A^{\frac{1}{2}}XB^{\frac{1}{2}})^*) \ge 0.$

Since $|\mathcal{J}|^2 X = |A|^2 X |B^*|^2$ and $|\mathcal{J}^*|^2 X = |A^*|^2 X |B|^2$, we have

$$|\mathcal{J}|^{\frac{1}{2^n}}X = |A|^{\frac{1}{2^n}}X|B^*|^{\frac{1}{2^n}}$$

and

$$|\mathcal{J}^*|^{\frac{1}{2^n}}X = |A^*|^{\frac{1}{2^n}}X|B|^{\frac{1}{2^n}}$$

for each integer $n \geq 1$.

Now, we need the following lemmas.

LEMMA 2. If A and B^* are p-quasihyponormal, then the operator \mathcal{J} on $\mathcal{B}_2(\mathcal{H})$ defined by $\mathcal{J}X = AXB$ is also p-quasihyponormal.

Proof. For $X \in \mathcal{B}_2(\mathcal{H})$, we have

$$\begin{split} \mathcal{J}^*(|\mathcal{J}|^{2p} - |\mathcal{J}^*|^{2p})\mathcal{J}X &= \mathcal{J}^*(|\mathcal{J}|^{2p} - |\mathcal{J}^*|^{2p})AXB \\ &= A^*|A|^{2p}AXB|B^*|^{2p}B^* - A^*|A^*|^{2p}AXB|B|^{2p}B^* \\ &= A^*(|A|^{2p} - |A^*|^{2p})AXB|B^*|^{2p}B^* \\ &+ A^*|A|^{2p}AXB(|B^*|^{2p} - |B|^{2p})B^*. \end{split}$$

Since A and B^* are p-quasihyponormal, we have

$$\mathcal{J}^*(|\mathcal{J}|^{2p} - |\mathcal{J}^*|^{2p})\mathcal{J} \ge 0.$$

LEMMA 3.

- (1) If T is invertible p-hyponormal, T^{-1} is also p-hyponormal.
- (2) Let T be invertible. Then T is p-hyponormal if and only if T is p-quasihyponormal.

Mi Young Lee and Sang Hun Lee

Proof. Note that if T is invertible, then |T| is invertible.

(1) Since $(T^*T)^p - (TT^*)^p \ge 0$, we have

$$(T^*T)^{-\frac{p}{2}}((T^*T)^p - (TT^*)^p)(T^*T)^{-\frac{p}{2}} \ge 0.$$

This is equivalent to

$$I \ge (T^*T)^{-\frac{p}{2}}(TT^*)^p(T^*T)^{-\frac{p}{2}}.$$

It is well known that $A \ge I$ implies $A^{-1} \le I$. Thus

$$0 \le (T^*T)^{\frac{p}{2}}(TT^*)^{-p})(T^*T)^{\frac{p}{2}} - I$$

= $(T^*T)^{\frac{p}{2}}((TT^*)^{-p} - (T^*T)^{-p})(T^*T)^{\frac{p}{2}}.$

This is equivalent to

$$0 \le (TT^*)^{-p} - (T^*T)^{-p}$$

= $((T^{-1})^*T^{-1})^p - (T^{-1}(T^{-1})^*)^p$.

So, T^{-1} is p-hyponormal.

(2) Suppose that T is p-quasihyponormal. Then we have

$$0 \le (T^{-1})^* (T^* ((T^*T)^p - (TT^*)^p) T) T^{-1}$$

= $(T^*T)^p - (TT^*)^p$.

The converse is trivial by the definition.

The following inequality due to McCarthy is an operator variant of the Hölder Inequality (see [5] and [9]).

HÖLDER-MCCARTHY INEQUALITY. Let A be a positive operator on \mathcal{H} . Then the following inequalities hold:

(1)
$$(A^r x, x) \le ||x||^{2(1-r)} (Ax, x)^r$$
 for $x \in \mathcal{H}$ if $0 < r \le 1$.

(2)
$$(A^r x, x) \ge ||x||^{2(1-r)} (Ax, x)^r$$
 for $x \in \mathcal{H}$ if $r \ge 1$.

An extension of the Fuglede-Putnam theorem

THEOREM 4. Let A be p-quasihyponormal and let B^* be invertible p-quasihyponormal such that AX = XB for $X \in \mathcal{B}_2(\mathcal{H})$ and $|||A^*|^{1-p}|| \cdot |||B^{-1}|^{1-p}|| \leq 1$. Then $A^*X = XB^*$.

Proof. Let \mathcal{J} on $\mathcal{B}_2(\mathcal{H})$ be definded by $\mathcal{J}Y = AYB^{-1}$ for all $Y \in \mathcal{B}_2(\mathcal{H})$. Since $(B^*)^{-1} = (B^{-1})^*$ is p-quasihyponormal by Lemma 3, Lemma 2 implies that \mathcal{J} is p-quasihyponormal. Since $\mathcal{J}X = X$ and since \mathcal{J} is p-quasihyponormal, we have

$$((\mathcal{J}^*\mathcal{J})^pX,X) \ge ((\mathcal{J}\mathcal{J}^*)^pX,X).$$

By Hölder-McCarthy inequality, we have

$$|||\mathcal{J}^*|^p X||^2 \le ((\mathcal{J}^* \mathcal{J})^p X, X)$$

$$\le ||X||^{2(1-p)} (\mathcal{J}^* \mathcal{J} X, X)^p = ||X||^2,$$

and hence

$$||\mathcal{J}^*X|| \le |||\mathcal{J}^*|^{1-p}|| \cdot |||\mathcal{J}^*|^p X||$$

$$\le |||A^*|^{1-p}|| \cdot |||B^{-1}|^{1-p}|| \cdot ||X|| \le ||X||.$$

Thus $||\mathcal{J}^*X - X||^2 \le 0$. So, $A^*X(B^{-1})^* = X$ and the proof is complete.

As consequences of Theorem 4, we obtain

COROLLARY 5 [3, THEOREM 3]. Let A be quasihyponormal and let B^* be invertible quasihyponormal such that AX = XB for $X \in \mathcal{B}_2(\mathcal{H})$. Then $A^*X = XB^*$.

COROLLARY 6 [2, THEOREM]. Suppose A, B and X are operators in the Hilbert space \mathcal{H} , such that AX = XB. Assume also that X is an operator of Hilbert-Schmidt class. Then $A^*X = XB^*$ under either of the following hypotheses:

- (1) A and B^* are hyponormal;
- (2) *B* is invertible and $||A|| \cdot ||B^{-1}|| \le 1$.

Mi Young Lee and Sang Hun Lee

References

- [1] S. C. Arora and P. Arora, On p-quasihyponormal operators for 0 , Yokohama Math. J. 41 (1993), 25-29.
- [2] S. K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 71 (1978), 113-114.
- [3] H. K. Cha, An extensions of a theorem of Fuglede-Putnam theorem to quasihyponormal operators using a Hilbert-schmidt operator, Youngnam Math. J. 1 (1994), 73-76.
- [4] J. B. Conway, Subnormal operators, vol. 51, Research Notes in Math., Pitman Advanced Pub. Program, 1981.
- [5] M. Fujii, R. Nakamoto and H. Watanabe, The Heinz-Kato-Furuta inequality and hyponormal operators, Math. Japonica 40 (1994), 469-472.
- [6] P. R. Halmos, A Hilbert space problem book, Springer-Verlag, New York, 1974.
- [7] M. Y. Lee and S. H. Lee, Some remarks on the structure of p-hyponormal operators, submit.
- [8] M. Y. Lee and S. H. Lee, Some generalized theorems on p-quasihyponormal operators for 0 , to appear in Nihonkai Math. J.
- [9] C. A. McCarthy, C_{ρ} , Israel J. Math. 5 (1967), 249–271.
- [10] I. H. Sheth, Quasihyponormal operators, Rev. Roumaine Math. Pures Appl. 19 (1976), 1049-1053.

DEPARTMENT OF MATHEMATICS, COLLEGE OF NATURAL SCIENCE, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA