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ANALYSIS OF SOME NONLOCAL
BOUNDARY VALUE PROBLEMS
ASSOCIATED WITH FEEDBACK CONTROL

HYUNG-CHUN LEE

ABSTRACT. Some nonlocal boundary value problems which arise from
a feedback control problem are considered. We give a precise state-

ment of the mathematical problems and then prove the existence and

uniqueness of the solutions. We consider the Dirichlet type boundary

value problem and the Neumann type boundary value problem with

nonlinear boundary conditions. We also provide a regularity results

for the solutions.

1. Introduction

Let us consider the following boundary value problem:

(1.1) ~Au = ¢ in Q
(1.2) u = ¢ on T,
(1.3) u = ¢+F(g%r)g on T,

where Q is a nonempty simply connected domain in RV, N = 2 or 3,
with a smooth boundary 9Q = TI'; T'; and I';, on which the sensors and
actuators are located, respectively, are portions of I'. For simplicity we
lt T =[,Ul, and [,NT, = 0. In (1.1)-(1.3), ¥ and ¢ denote a given
source and a given boundary condition respectively. The function g is a
fixed function defined on boundary such that g € HY/2(T"). The function
g has compact support on I'.. F is, in general, a linear or nonlinear
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functional on H~/%(T,). This problem motivated by feedback control
theory. A typical optimal control problem is the following: find the best
controller such that some observation v = Fu achieves a desired value
g or is at least as close as possible to 74, where F is a general linear or
nonlinear operator which may involve integrals of v and/or derivatives
of u, where u is the state of the system (See [3, 6, 7, 8}).

Because of the boundary condition (1.3), the above problem (1.1)-(1.3)
is not an elliptic problem in the usual sense.

We shall study the existence and uniqueness of the boundary value
problem for Dirichlet type and Neumann type in sections 2 and 3, re-
spectively. Here, we introduce some of the notions and function spaces
used in subsequent sections (for details see [1} and [9]). Let H*(D),
s € R, be the standard Sobolev space of order s with respect to the set
D, where D is either the domain Q C R, or its boundary I, or part of
that boundary. Recall that H%(D) = L?(D). Let the space H}(D) be
the closure in the H™(D) norm of the functions in H™(D) which have
compact support in D\ D. We close this subsection by introducing some
theorems which will be useful later. The following theorems can be found
in [2] and in the references cited there. Throughout, C' will be a generic
constant with different values on different places.

THEOREM 1.1. Let u € H*¥(Q), k > 1/2. Then there exists a trace of
the function u on 92 and

(1.4) Hull ger2pa) < Cllullgxe)

where C does not depend on u.

THEOREM 1.2. Let u € H*(Q), k > 3/2. Then there exists a trace
Ou/O6n on 0N and

a9 2

where C' does not depend on u.

100 < Cllullax@)

For the case k < 3/2, we have the following theorem. Let Q(Q) C
H'(Q) be the space of all functions which satisfy the equation

(1.6) —Au=0
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in the weak sense; i.e. Q(Q2) be such a subspa.ce of functions u that
ou 811

(1.7) / Z Oz; 6:1:,

for every v € H}(Q).

THEOREM 1.3. Let u € Q(2). Then we have du/0n € H-1/2(6Q)
and

(1.8) < Cllu|lme)

15 m <
where C does not depend on u.

2. The Dirichlet Type Boundary Value Problem

Let € be an open, bounded and nonempty simply connected domain
and the boundary I" be Lipschitz-continuous. The boundary I consists of
I'. and T, such that I' = T,UT, and I', T, = §. Throughout this section,
we will assume ¢ € L%(2), ¢ € HY(T'), and g € H;?(I‘) whenever we
do not specify the function spaces.

Let us consider the inhomogeneous Dirichlet type boundary value
problem

(2.1) —-Au = ¢ inQ,
(22) u = ¢ onT,,
o
(2.3) u = F( Zr)g+¢ onT,,

where F is a functional on H~'/2(T,).
Let us consider the following non-homogeneous Dirichlet’s problem:
Given f in H™1(2) and g in HY*(T'), find a function u such that:

(2.4) Au = f @mQ
(2.5) u = ¢ onl

PROPOSITION 2.1. Problem (2.4)—(2.5) has one and only one solution
u € H'(Q) and there exists a constant C = C(Q) such that

(2.6) llulle < C(llfll-10 + l18ll1/2r)
i.e., u depends continuously upon the data of (2.4) — (2.5).
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Proof. For the proof, see [5]. a

THEOREM 2.2. Let i and 4 be the solution of the boundary value
problems

(2.7) -Ai=0 inQ,
(2.8) @=¢ ondN
and

(2.9) -Ad=0 inQ,
(2.10) i=g ondQd

respectively, where g € Hll-f 2(I").
If a nonlinear functional F satisfies

(211)  |F(h)=F(R)| <6|lh~h|lapar, VhheHAT,)
where § satisfies

<
(2.12) 0 5]] ]] o, <1
then the Dirichlet boundary value problem
(2.13) -Au = 0 in,
(2.14) u = ¢ onl,,

Ou

(2.15) u = (Bn, )g+¢ onT,,

has a unique solution.

Proof. By Proposition 2.1, given any a € R, the boundary value prob-
lem

(2.16) ~Au=0 inQ,

(2.17) u=ag+¢ ondQ

has a unique solution u = at + %. Thus, we are looking for a function
u € Q(R) such that

(2.18) u= F(g%lr,) i+
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For the existence, it is sufficient to show that the equation (2.18) has

a solution & € Q(). Fixed any uy € Q(Q) and thereafter iteratively
define

(2.19) Ups1 = F(aa“" ) +i

for k=0,1,2,... . Then, obviously u; € Q(Q2) for k =0,1,2,... and

P(5]) - F (Gl
< o) T = G L,
5 8 Que1| | 04 O
= 4 F(at'::'l’.,) ZZ+6Z F( gl;llr,) 6_::,_8_ZH~1/2,F.;

= 6] 5 e | FG) - (552 |

P52l - F(a“’“ )l
< (811 5 lns) P (Ge]) - F (5]

for k=1,2,.... Consequently if £ > [,

Hue — wllie

- ?F(agillr,) P(Te] )| o

5 r(l) - (G2, )
(G2, - (el e 5 (5] 2L,

Hence {u}$2, is a Cauchy sequence in Q(Q ) provided (2.11)-(2.12), and
so there exists a point & € Q(€2) with

(2.20) u, — @ in Q(Q).

IA

IA
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Clearly

QE
on
For the uniqueness, let % be another solution to the equation (2.18) such
that @ # @. Then, from the hypothesis (2.11), we have

(2.21) a:ﬁ(

)a+a
L,

et = (2]~ (2], )l
< ) 5l P ) ~ F ] )
< (0115 1) 1 k)~ F el )
ot n |0 O "
= (6 3_; —1/2,[‘.) d 52—_5%”-1/2,& ||u||1,g
< (5] 32 |IL, op.) "l —lsa lalha

for any n. The last inequality can be obtained using Theorem 1.3 where
we reset C as C§. Since the last term goes to zero as n — oo, it contradict
to @ # .

Therefore, the proof is completed. O

REMARK 2.1. Note that (2.12) can be viewed as condition on the data
g. We also note that if (2.13) is inhomogeneous one can always turn into
a homogeneous problem with different ¢.

We have a regularity results for the soultuion u of the boundary value
problem (2.13)-(2.15).

THEOREM 2.3.

i
onl|_1sr, N .

(2.22) lullo < - [al]1.0+ llall0
B on -1/2,T,

where 3 = |F(0)].
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Proof. Let us consider the following inequalities

PGkl < Al * IFO)

= 8l 5+ P () 5 Ly, 17O
< (15l * P Grle) 3]s + PO

Let 8 = |F(0)|, then provided (2.11) we have

|y, +2
22 ¥ (g%'r,)l 5”a../|2|r"

-1/2,T,
Thus, we have
lha = [fa+F (5, ) ol
i
< |lalhe+ 6Ha"“_1/2’r' e lalle

=48],

Now, let us consider for the case of continuous linear functional F'.

a

THEOREM 2.4. Let 4 and 4 be the solution of the boundary value
problems (2.7) — (2.8) and (2.9) — (2.10) respectively.
If a continuous linear functional F satisfies

o (%)%

then the Dirichlet boundary value problem (2.13) — (2.15) has a unique
solution.

Proof. By Proposition 2.1, given any a € R, the boundary value prob-
lem

(2.25) ~Au=0 ing,
(2.26) u=ag+¢ onodQ
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has a unique solution u = at + 4.
Taking the normal derivative, from the linearity of F, we get

(2.27) F(gz— n) = F(g% r,)F(g—Z 1«,) +F(§%'r,)

Thus, providing (2.24) holds, F(—g% . ) is well defined and
Ou F(gﬁ r )

(228) F(5],) = — 2

2.28 (6n r,) 1— F(% r,)

By the substitution method, we have shown the existence of the solution
u. The uniqueness of the solution follows from the following Lemma and

the linearity of the problem.

REMARK 2.2. We note that for a fixed g € Hllf 2(T") and a continuous
linear functional F’ the solution u to the boundary value problem (2.13)-

(2.15) depends linearly on the boundary condition ¢ and so .
LEMMA 2.5. For any g € H%‘{Z(I‘) such that

ou
(2.29) F(Eﬁ r,) #1
where 1 is the solution of the boundary value problem
(2.30) Al = 0 inQ,
(2.31) @ = g onl,
the boundary value problem
(2.32) —-Au = 0 inQ,
(2.33) u = 0 onT,,

Ou

(2.34) u = F(a_n I1,)9 onl,

has a unique solution u = 0.

proof From the boundary conditions, we know that & = 0 in 2. From

Theorem 2.4, we only need to show the

(2.35) F(g% r,) = 0.
332




Analysis of some nonlocal boundary value problems

Let @ be the nontrivial solution of (2.32)-(2.34), i.e., 4 is not identically
zero, which implies that

(2.36) F(g-g ) £ 0.

Taking the normal derivative and a bounded linear functional F in @, we
have

T,

(237) F(g—%lr,) - F(gng r,)F(%z-lr,)
From (2.29), F (%) must be zero which contradicts (2.36). 0

3. The Neumann Type Boundary Value Problem

Let 2 be an open, bounded and nonempty simply connected domain
and the boundary I' be Lipschitz-continuous. The boundary I' consists
of T', and T, such that I' = I, UT, and T, N, = @. Throughout this
section, we will assume ¢ € H™V/2(T'), and g € Hp, Y %(I") whenever we do
not specify the function spaces.

Let us consider the Neumann Type boundary value problems

(3.1) —Au = 0 inQ,
(3.2) (;—a:- = ¢ only,
Ou
(3.3) o = Flur)g+é onT.

where, in general, F is a nonlinear functional on H/?(T,).
First, we consider the Neumann boundary value problems

(3.4) —Au = 0 inQ,
(3.5) g% = ¢ onl

where n is unit exterior normal on 0€2. From the theory of the elliptic
partial differential equations, we know that there is a solution u € H}(Q2)
satisfying (3.4)-(3.5), and

(3.6) inf ||ul|g @) < Clléllg-120)
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for some C > 0 independent of ¢, with the infimum taken over all such
u satisfying (3.4)-(3.5), if and only if the compatibility condition
(3.7 / ¢dS=0

a0

is satisfied.
We circumvent the difficulty by seeking u in the quotient space H(Q)/R
equipped with the quotient norm

(3.8) el ey r = i [[ul |-
The theorem below states an important property of this space.

THEOREM 3.1. Let Q be a bounded, simply connected and Lipschitz
continuous open subset of RN. The space H(Q?)/R is a Hilbert space
for the quotient norm (3.8). Moreover, on this space the functional . —
|ul1,q is a norm equivalent to (3.8).

Proof. For the proof, see [10). O
We will assume that the functions ¢ € H-V/2(0Q) and g € H~/2(6Q)
satisfy

(3.9 / $dS=0 and / gdS=0
a0 o0
Hereafter, we will assume that g has compact support on I',.

THEOREM 3.2. Let @ and 4 be the solution of the boundary value
problems

(3.10) —A = 0 inQ
(3.11) g—:, = ¢ ondfN
and
(3.12) -Ad = 0 inQ
(3.13) g:i— = g ondQ
respectively.
If a nonlinear functional F satisfies
(3.14) |F(h) — F(R)| <6 || k= h|lyor, Vh € HY(T,)
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where ¢ satisfies

(3.15) 0<$ H a|r,|l1/2,r‘ <1,

then the boundary value problem,

(3.16) —-Au = 0 inQ (),
(3.17) g% = ¢ onl,,
(3.18) g% = F(ulp,)g+¢ onT..

has a unique solution in H*(Q)/R.

Proof. By the theory of the elliptic partial differential equation, for
given any a € R, the boundary value problem

(3.19) —Au=0 inQ,

(3.20) % —ag+¢ A0

has a unique solution u = ail + @ in H!(Q2)/R. Thus, we are looking for
a function u € Q(2) such that

(3.21) u=F(ulr,) 4 +4

For the existence, it suffices to show that the equation (3.21) has a
solution & € Q(f2). Fixed any uy € Q(f2) and thereafter iteratively define

(3.22) Uk1 = Fuglr,) 4+

for k=0,1,2,... . Then, obviously uy € Q(2) for k=0,1,2, ... and
|F(uk+1]r,) — F(uelr, )]

6 || k1 — ux |l1y2r,

& || F(uklr,) &+ @ — F(ug-1lr,) & — @[y,

6 14 lhyer, | F(ulr,) — F(uk-1r,) |

A

and so

|F(uksale,) — Fuglr,)]
< (6112 llyer, )* |F(ulr,) — F(uolr,)|
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for k =1,2,.... Consequently if k > [,

luk - Uzlm
= IF(uk 1r,) = F(w-a|rn,)| 4]0

k—
< Z | F(ujilr,) — F(usle,)l 1o
j=i-1
k-2

< 1Pl = Fluole)l e Y (6114 1har, )

=i~1

i=
Hence {u;}, is a Cauchy sequence in Q(f2) provided (3.14)-(3.15), and
so there exists a point @ € Q(Q2) with

(3.23) ur, — T in Q(R).
Clearly
(3.24) @ = F(t|r,)d + 4.

For the uniqueness, let & be another solution to the equation (3.21) such
that & # 4. Then, from the hypothesis (2.11), we have

|e —aho = |F(@r,)~ F(alr,)| lile
< 6|l allyer, |F(alr,) — F(al,)] |40

< (M@ lhyar,) 1F (@) - F@ln,) lalha
< (61@lher) ol - allyar, laha
< (3l @lhar,) Cli = ha liha

for any n. The last inequality can be obtained using Theorem 1.1 where
we reset C' as (/4. Since the last term goes to zero as n — oo, it contradict
to 4 # 4.

Therefore, the proof is completed. a

Note that (3.15) again can be viewed as a condition on g.

We have a regularity results for the soultuion u of the boundary value
problem (3.16)-(3.18).
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THEOREM 3.3.

8||@ll-1/ar, + 8

3.25 < =
( ) lull,ﬂ =79 = 6”””1/2’I‘6

|@]ia + e

where 3 = |F(0)|.
Proof. Let us consider the following inequalities

|F(ulr,)] 8)|ullijor, + |F(0)]
8|| i + F(ulr,) @ [lhy2r, + |F(0)|
< S(allyjer, + [F(uln,)| l|@ly2r,) + [F(O)].

Let 3 = |F(0)), then provided (3.14) we have

S|[ullyjar, + B
1 —6llaflijer,

IA

I

(3.26) |F(ulr,)| <

Thus, we have

luho = lé+ F(ulr,) dle

Sllallyor, +8 50

1 — d]|a|[1/2r, 0

IA

] +

For the case of continuous linear functional F', we have the following
results.

THEOREM 3.4. Let i and @ be the solution of the boundary value
problems (3.10) — (3.11) and (3.12) — (3.13) respectively.
If a continuous linear functional F satisfies

(3.27) F(alr,) # 1,

then the Neumann boundary value problem (3.1) — (3.3) has a unique
solution in H'(2)/R.
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