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ERROR ESTIMATES FOR A FREQUENCY-DOMAIN
FINITE ELEMENT METHOD FOR
PARABOLIC PROBLEMS WITH A

NEUMANN BOUNDARY CONDITION

JONGWOO LEE

ABSTRACT. We introduce and analyze a naturally parallelizable fre-
quency-domain method for parabolic problems with a Neumann bound-
ary condition. After taking the Fourier transformation of given equa-
tions in the space-time domain into the space—frequency domain,
we solve an indefinite, complex elliptic problem for each frequency.
Fourier inversion will then recover the solution of the original prob-
lem in the space-time domain. Existence and uniqueness of a solution
of the transformed problem corresponding to each frequency is estab-
lished. Fourier invertibility of the solution in the frequency—domain
is also examined. Error estimates for a finite element approximation
to solutions of transformed problems and full error estimates for solv-
ing the given problem using a discrete Fourier inverse transform are
given.

1. Introduction

Let Q be the unit open cube in R¢, d = 2,3, J = [0,T], T > 0,
and ' = 0. We are interested in a numerical method for the following
parabolic model problem:
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(1.1) )\%%(a:,t) -V - (kVu)(z,t) = f(z,t) inQxJ,

(1.2) g—Z(m, t) = 0 onlxJ,

(1.3) u(z,0) = 0 forzeQ,

where n = (ng,ng,, -+ ,Ng,) is the unit outward normal vector on T,

and A € L%(R), k € Wb®(Q) are positive functions of = defined on €,
which satisfy 0 < k, < & < k*, |Vk| < k* and 0 < A\, < A < \* where
K+, K*, Ay, and A* are constants.

Problem (1.1) often describes the temperature distribution of an insu-
lated isotropic inhomogeneous medium with the heat capacity A(z), z €
2 and the thermal conductivity k(z), z € Q2 subject to a time-limited
heat source f(z,t) € Q x J and the initial temperature distribution
u(z,0) =0,z € Q.

The most popular effective methods to get a numerical solution of
(1.1) are to approximate the solution of the problem in the space-time
domain by using a marching algorithm such as backward-Euler or Crank-
Nicholson methods. Such methods have proven to be applicable to many
practical problems. In order to advance to next time steps when one
uses a marching algorithm, one needs to solve elliptic problems using
informations on space grids at the current and/or previous time steps.
It is also well-known that shorter time steps are needed when one wishes
to capture sharper initial changes near ¢t = 0.

In this paper, we propose and analyze an alternative (finite element)
numerical method, frequency—domain method, to approximate the solu-
tion of Problem (1.1) by using the Fourier transformations.

We first transform the problem (1.1) into a set of elliptic problems for
discrete number of different frequencies of interest by taking the Fourier
transformation in time t. We then approximate the solution of the trans-
formed elliptic problem corresponding to each frequency. The numerical
solution of Problem (1.1) at a given time is then recovered by a discrete
Fourier inverse transform.

The main characteristics of the frequency—domain formulation is that
the elliptic problem corresponding to one frequency is completely inde-
pendent of the other problems corresponding to the other frequencies.
Therefore we are able to solve the set of elliptic problems simultaneously
by assigning problems with different frequencies to different processors,
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Error estimates for a freq. domain FEM for parabolic problems

if there are lots of processors available. Then our numerical solutions at
any given time ¢ of Problem (1.1) is recovered by combining the solu-
tions using a discrete inverse Fourier transform. Independence of each
problem guarantees no communication cost among processors. Thus the
frequency—domain formulation for Problem (1.1) may give us a very nat-
ural parallel algorithm.

On the other hand, in the recent decade, there have been remarkable
advances on parallelization with respect to the spatial discretization; for
instance methods based upon decomposing the domain into subdomains
using the idea of domain decomposition methods in solving each elliptic
problem corresponding to each fixed time step. For some accounts for
such methods, see some of [4, 5, 12, 13, 15, 16, 22] and recent publ-
cations in major numerical analysis journals. However, these methods
require heavy communication cost among processors in order to pass
informations between neighboring subdomains. In this sense, parallel
algorithms based on the space-time formulation are not naturally paral-
lelizable. Thus we might say that the most favorable advantage for our
scheme lies in the natural parallelization when massively parallel proces-
sors are available.

The above frequency—domain procedure has been proven to be very ef-
ficient for solving wave propagations with absorbing boundary conditions
in a parallel machine [9, 10]. Wave equations becomes Helmholtz-type
equations in the space-frequency domain, which have eigensolutions with
Dirichlet or Neumann boundary conditions. This is not the case with
absorbing boundary conditions; with such conditions the Helmholtz-type
equations are uniquely solvable, and thus a natural parallelization is pos-
sible in the sense mentioned above. for details, see [9, 10, 11, 17]. Re-
cently frequency—domain approaches to parabolic problems with other
kinds of boundary conditions were analyzed, see [19, 23]. See also [18]
for an analysis of a linearized Navier-Stokes equations, where a similar
treatment for the Dirichlet boundary condition has been done.

This paper is organized as follows. In §2, we give the frequency-
domain formulation for Problem (1.1) and show that the problem in the
frequency—domain has the unique solution for each positive frequency,
and regularity and stability results are given for such solutions. In §3
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we first treat a finite element procedure for a transformed problem cor-
responding to a single frequency and derive error estimates for the pro-
cedure. We then give full error estimate for solving (1.1) via the inverse
Fourier transformation.

2. Frequency-Domain Approach

2.1. Problems in the Frequency—Domain

Recall first that the Fourier transform v(-,w) of a function v(:,t) in
time is defined by

(-, w) = /_oo v(-, t)e " tdt

¢ ]
and the Fourier inversion formula given by
1 [ ;
v(-,t) = — (-, w)e“tdw.
(=5 [ 5w
Note also that if v(z,t) is a real function, its Fourier transform satisfies
the conjugate relation:

(2.1) (z, —w) = V(z,w), w € R.
Then, the Fourier inversion formula takes the form
00
(2.2) v(z,t) = %Re/ oz, w)e* dw.
0

In order to take the Fourier transform of Problem (1.1), we shall as-
sume that the source function f(z,t) in (1.1) is defined on Q x (0, 00).
We then extend u and f by zero for ¢ < 0 and transform the space-time
formulation of the equations (1.1) to a space—frequency formulation by
taking the Fourier transform of (1.1) with respect to the time variable ¢.
We then obtain a set of the following elliptic problems:

For each w, find u(z,w) such that

(2.3) WNi—V-(kVE) =F, z€q,
o4

Since the source f(z,t) is real, an application of (2.1) to the equations
(2.3) leads to u(z, —w) = u(z,w). Therefore it suffices to find solution
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U(z,w) of Problem (2.3) for all w > 0, and then the solution u(z,t) of
Problem (1.1) is found by using the Fourier inversion formula.

If w = 0, then (2.3) becomes a Poisson’s equation with a Neumann
boundary condition; a solution exists and is unique up to an additive
constant so long as

(2.5) /ﬂ F(z,0)dz =0.

It then follows from (2.5) that the mean value of the source f(z,t) must
satisfy the following condition;

/Q /0 "tz t)dt dz = 0.

REMARK 2.1. If one chooses an appropriate quadrature, e.g., the mid-
point rule, for a discrete Fourier inversion formula, one needs not to
consider the problem (2.3) corresponding to w = 0. Henceforth we will
confine ourselves to the cases w > 0.

2.2. Variational Formulation

All functions are assumed to have values in the complex field C. But,
they are considered in the real field for the time—dependent problems.
Standard notations for function spaces and their norms will be used in
this paper. See [1, 8] for more details of function spaces and related
norms.

For each given w > 0, define the sesquilinear form a,(-,-) : H(Q) x
H'(Q) — C by

a,(u,v) = iw (M, v) + (kVu, Vv), u,v € H(Q).

A wvariational formulation of problem (2.3) is then as follows;
For each frequency w > 0, find @(-,w) € H(Q) such that for a given
fe LX)

(2.6) a,(@,v) = (f,v), ve H(Q).
An application of the Green’s theorem immediately gives that if f( L w) €

L*(Q) for each frequency w > 0, then u(-,w) € H*Q) is a solution of
(2.6) if and only if U(-,w) is a solution of (2.3).
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2.3. Uniqueness and Existence

In what follows, C will denote a generic positive constant which may
differ from place to place.

THEOREM 2.1. Let w > 0 be given. Assume that f(-,w) € L%().
Then the equation (2.6) has a unique solution u(-,w) € H(Q).

Proof. From the definition of a,(-,-),

1/2
@) = [IVAal+Ivaval]” > -

[wA)El* + s, VE]]

S

> < minfw, 1}@J2

V2

Therefore we have
la,(@,3)] > C,lall},

where C,, only depends on 2 and A,, k, and w. Thus, a,(-,-) is coercive.
We also have the following inequality: for @,v € H}(Q)

@9 < V3] |vXe| + IvEvallveval
< wA @l 1Bl + &* V| Vol

Therefore we have
la,(,9)] < C(L+w)all o],

where C only depends on Q, k* and A*. Thus, a,(-,-) is continuous.
An application of the Lax-Milgram lemma [8, 21] gives uniqueness and
existence of the solution of Problem (2.6). ' O

2.4. Regularity and Stability

We are now going to establish stability and regularity of the solution
of the problem (2.3). For given w > 0, we begin with taking v = ¥ in
(2.6):

(2.7) iWw(MT, B) + (kVE, VE) = (F,4).
The imaginary part of (2.7) gives
2 ~ ~
oMl < w||Vaa| =m(f2) < Il
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Therefore we have
~ 1 i
28) 2l < o2y
On the other hand, the real part of (2.7) gives

wIVER < |VEVEI® = Re(f,8) < [IfllIaI-
From (2.8) it follows that

IVall < C\/—Hfll

Summarizing the above estimates, one gets the following lemma.

LEMMA 2.1. Let 4(-,w) € HY(Q) be a solution of Equation (2.6)
for a given w > 0. Then we have the following estimates:

(2.9) ol < CoIfewl,
(2.10) W)l < \/—Ilf(,w)ll,

Let us now turn to an H?(f2)-estimate for the solution @ of Problem
(2.3). First, we need the following result. See [11] or [23] for a proof.

LEMMA 2.2. If@i(-,w) € H?(Q) is a solution of Problem (2.3), then
the following estimate holds.

S o%
(2.11) > Faidr,

3,j=1

Using the above lemmas and the condition which k € W®(Q), we
now have the following result.

LEMMA 2.3. Assume that w > 0 is given and f(-,w) € LX(Q). If
a(-,w) € H*Q) be the solution of (2.6), then there exists a positive
constant C such that

(-, w)lz < CA+w ™ )FC, W)l

In partjgular, the estimate of Lemma 2.3 shows the existence of & €
H?*(Q) if f € L*(Q) by the method of Galerkin approximation [20].
We summarize the above results in the following theorem.
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THEOREM 2.2. For any f(~,w) € L%(Q2), there exists a unique so-
lution U(-,w) € H*(QY) with

la(, W)l < CA+w™HIFC, W)
As an immediate result of Theorem 2.2, we have the following.

COROLLARY 2.1. If||(1 +w‘1)f(-,w)|| is integrable with respect to
w over the frequency domain R, then there exist a Fourier inverse u(z,t)
of the solution u(-,w) € H%(Q).

3. Finite Element Approximation and Error Estimates

Here we first derive error estimates for a finite element procedure for
a transformed problem corresponding to a single frequency and then give
full error estimates for approximating the solution of (1.1) via the inverse
Fourier transformation.

3.1. Error Estimates for a Single Frequency

Let h > 0 be a discretization parameter tending to zero and V;, C
H'(f2) be a finite element space. Then the discrete problem correspond-
ing to (2.6) reads:

For each w > 0, find @ € V, such that for a given f € L2(9),

(3.1) au(@,v) = (f,v), vEV

We shall assume that V}, satisfy the following property: There exist a
positive constant C and an operator 7, : H%(2) — V}, independent of h
such that

(3.2) lv — mollx < Ch**uly, ve HYQ), k=0,1.

For such finite element spaces, we refer, for example, [2, 3, 6, 7, 14]. Let
Up(-,w) € V; be the Galerkin approximation to %(-,w) of (2.6). Then
Up(-,w) exists uniquely due to Theorem 2.1. Furthermore we have the
following error estimates:
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THEOREM 3.1. Assume that f(-,w) € L*(). Then the approxi-
mate solution %,(-,w) of (3.1) to the solution u(-,w) of (2.6) for each
frequency w > 0 satisfies that

(3-3) (-, w) = G (- w)lls
(3-4) (-, w) — @ (-, )|

Proof. From (2.6) and (3.1), we have the error equation:

Clw +w )R 0)l,
Cw? +w R F, 0l

<
<
a, (8 — Uy, v) = 0, v E VWV,
which implies, for arbitrary x € V;
a,(T — Up, ¥ — ) = a, (¥ — Up,u — x).

The real and imaginary parts of the above equation and continuity of a,
yield the following estimates:

K[V (@ — @)|*

W, [T — a |2

C(1+w)la — @all1]|& — xIh

<
< C(+w)l|w—aa|l1 )|z — xl

Using the above two equations, (3.2) and Lemma 2.3, an appropriate
choice of y yields

Il = Glly

IA

1Y,
¢ (w+ ) 1=l
1 o~
< Ch (w+—)|u|2
w
1 -~
< Ch{w+—5 I

which proves (3.3).
For a proof of the second inequality the usual duality argument will
be used. Let z € H%(Q) be the solution of

au(z,v) = (@~ Up,v), veEH(Q).
Then, from Lemma 2.3, we have
l2la < C (1 +w™2) @ — .
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Using the continuity of a,,, the error equation, (3.2), (3.3), and the above
estimate, we have

1T —Bl? = au(z,@— )
la,(z — mhz, & — Up)|
< CQ+w)l@— Gyl |2 — mzl
< C(l+w)h|E — |y |2]e
< CQ+w)(w+w ¥ (1 +w V)R f] 1 - Gl

A simplification of the coefficient of the last term completes the proof. 0
2. Full Error Estimate

We are now going to give the full estimate of errors for a fixed time
t introduced by the truncation and discretization of a quadrature of the
inverse Fourier transform, and caused by finite element approximations.
First, for nonnegative integers k > [, let us define a function P(¢) for a
given function f(z,t) on Q x (0, 00) as follows.

Pt = ( / oot f(z, a)u?do)%,

Pit) = (/ / / e\ f(z,0)||?dodo - - da,)7 for 1 >0

LEMMA 3.1. Let u(z,t) be the solution of Problem (1.1). Suppose
that for a given integer k > 0, Pi(t) € L?(0,00) for all 0 <1 < k. Then
there is a positive constant C = C(\,) such that

k
(3.5) 5 u(z, Ol T2 o.00pz2iy < CZ|I'P}C(t)“%2(o,oo)-
1=0
Proof. For k =0, multiplying (1.1) by u(z,t), we have
2dt (/\u u) + (kVu,Vu) = (f,u).
Thus for any € > 0 we have

SV < s el
LA+ e [Voul]

dt 2
(3.6)

IA
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Multiplying (3.6) by e 2%, b = { and integrating it from 0 to ¢, we

obtain

3.7) Aful, 2 < 'lﬁu(-,t)”z < et /0 e F oo

Therefore with the choice of € = 2b,

38)  IuG.olk<c ]0 e~ £(-,0)|Pdo = C{PYD)}.

Thus the inequality (3.5) follows for k = 0.
For k = 1, multiplying (1.1) by ¢, we obtain

Atu( ) — V- (5tVu(,t)) = tf(-,t) + dul- ).

Again multiplying the above equation by tu and following similar argu-
ment as for k£ = 0, we have for any 1 > 0,

dt2 '\/—t H Zl;’(||tf||2+ Hﬁu“z) +n(b+1) “«/Xtulr

Then the same process to get (3.7), the choice of n = 2(b+1) and (3.8) give

e, < 0 ( [ etorcolar+ [ [ eise,o)fdoan)
= C{UPUOP +{POP).

Thus the inequality (3.5) follows for £ = 1. Repeating the similar argu-
ment as the above for £k > 1 completes the proof. O

We also have the following lemma under an additional assumption on

f(z, ).

LEMMA 3.2. Let u(z,t) be the solution of Problem (1.1). Suppose
that for a nonnegative integer m, the assumption of Lemma 3.1 holds for
0<!<k<mand f(z,t) € L*(0,00); L)) in Problem (1.1) and

[ /0 1, )IP ds dt < oo,
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k=0,1,2,... ,m. Then we have the following estimates: fork =0,1,2,..

00 - t
3.9)  It*u(, )lIieomrme) < C{/{) t2k/0 I£(-, )| dsdt

k
.S up,z(t)uia(o,w)} .
=0

Proof. Multiply (1.1) by w(-,t) to get, for any € > 0,
1d 1
Sz 29y COIE < Sy D2 T
Ml O + 5 I 2TuC 0 < 1FG I + el I,
from which we have with a choice of a sufficiently small 0 < € < A,
d
ffae-, )12 + gg”"”vWVU(',t)HZ < Clfe ol

By integrating the last inequality with respect to s over [0,¢] for any
positive ¢, we get

IVu(, t)|I* < Clls"2Vu(, )” < C/O I£C 5)lI*ds.

Multiplying by t? both sides of the above inequality and then integrating
over (0, 00) in ¢, and using (3.5) we obtain the desired estimate (3.9). This
completes the proof. O

REMARK 3.1. Note that the integrals with respect to ¢ over (0, o)
in Lemmas 3.1 and 3.2 can be replaced by integrals over (0,7*) for any

T > 0.

We are now in a position to estimate the full errors of our algorithm
when we approximate the solution u(z,t) of Problem (1.1) for a given
time . R

We consider restricted sources such that [f(-,w)| is square integrable
with respect to w over (0,00) and thus negligible for large |w|. We then
choose a sufficiently large w* > 0 so that %(-,w) and f(-, w) are negligible
for |w| > w*. Also recall that the computation of (-, w) for w < 0 is
not necessary. Let M be a positive integer and define the discretization
parameter Aw of the frequency domain by the formula Aw = w*/M,
and introduce the mesh points w1 = (4 - %)Aw,j =1,---,M on the
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interval (0,w*). Due to (2.2), the time-domain solution u of (1.1) will
then be approximated by

M
1 —~
A0(Z5 1) == E Up(z, wj— l/g)e’t‘”J 12 Aw.

We now try to estimate the convergence of ul. 5,(-,t) to u(-,t) for a
fixed time ¢. Setting

*

1 [ .
U (2, t) = ;/0 i(z, w)e dw

and
M
_ 1 P i1z A
U, Au(Z, t) = - U(z,wj_12)e w,
Jj=1
we write

u(z,t) — UZ',AW(% t) = (u(z,t) —u(z,t))

+ (U (2, t) — Upr Au(Z, t))

+ (uw.,Aw(a:, t) — uZ.Aw(a:,t))
Ei(z,t) + Es(z,t) + E3(z,t).

First, by Lemma 2.1 we get

”El(',t)” -<- 7 Juswt 'u( ’w)”dw
(3.10) < Cfuw LI £ w)lldew
< C [ 1FCw)ldw.

Thus ||Ei(-, )] — 0 as w* — oo.
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We also have the following estimate for || E5(-,t)||, using the midpoint
rule for the Fourier inversion formula.

2
1B 01 < G Ja|fe iz, Yetd — T e, 051706 i A da
iz w)et
< C(Aw) | ,
< w)* [o |5 55 0w

2
O} fy |- ua, ) + 2, ) - 2t [,
C(Aw)* fo {IBu(z, ) Bao 0
B, Y + I Woee) }
C(w)* {7l o oy 00

+ PlltullFa o c0przy T t4||u||%2((o,oo);n(n))} ’

(3.11)

IA

where the last equality is due to the Parseval identity. Thus, if the
assumption of Lemma 3.1 holds, then || Ex(-,t)|| — 0 as Aw — 0.
Finally, from Theorem 3.1, we have

1B O < O[3 S5 @) = B wioa)) emm
(3.12) < o ZJ |88 wimage) — u(a“’J 1/2)H
' SCMZ W(uﬁ‘1MW(%wm

< C’h2”w +w ) f(w )H

L2((0,00)L2(®)

Thus, if we assume that

H(w2+w"2)f(-,w) L2,((0,00);L2(62)) = [/ “(w T 2)f ” ] 0

then || E5(-,t)|| - 0 as h — 0.
Combining the estimates (3.10), (3.11) and (3.12), and using Lemma 3.1
we have the full error estimate.

THEOREM 3.2. Assume that the assumption of Lemma 3.1 holds
for k =0,1,2 and that

-~

“ (w2 + w'z) (-, w)
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Then uf. 5, (-,t) converges to u(-,t) for a fixed time t > 0; moreover,

) = a0 <o [ R

w>
2 k

+Co(Aw)? Y 7> [P(#) ]l 220,00
0 =0

+C3 h? H (W +w™?) f(.,w)

L3(000) L)’
with Cj, j = 1,2, 3, dependent only on the domain Q and the coefficients
Kk and A

Finally estimating ||E;(:,w)||1, for 7 = 1,2, 3, similarly as the above
and using Lemma 3.2, we have the following error estimate.

THEOREM 3.3. Assume that the assumption of Lemma 3.2 holds
for k =0,1,2 and that

“ (w‘3/2 + w) f(, w)

Then ug.' au(+yt) converges to u(-,t) for a fixed time t > 0; moreover

) = s O S G [ 1Tl o

w>

+Cy(Aw)? i 2k { [/Ooo 2k /ot £, ) |dr dt] v

k=0
k
+3 “'lec(t)llﬁ(o,oo)}
1=0

+Csh ” (w‘3/2 + w) f(-,w)

LZ((0,00);,L2())

L((0,005, ()’
with C;, 7 = 1,2,3, dependent only on the domain Q2 and the coefficients
k and A.

REMARK 3.2. We are interested in finding the solution u(z, t) of Prob-
lem (1.1) for all (z,t) € @ x J, J =[0,T]. It is at our disposal how
to extend f(z,t) for t > T in order to transform the space-time domain
problem (1.1) into the frequency-space domain problem (2.3). For exam-
ple, we may extend f(z,t) by zero for ¢ > T. But in this case, due to the

359



Jongwoo Lee

Neumann boundary condition, the solution may not decay as time grows.
So we cannot expect that both of the second term of the right-hand sides
of Theorem 3.2 and Theorem 3.3 are bounded for Problem (1.1) with this
extended source. Instead, we alternatively may extend the given time-
limited source function f(z,t) for t > T so that f(z,t) =0, t> T, for
some T, > T and that

00 Te
f(z, 0) = / f(z,t)dt = f(z,t)dt =0, zeq.
0 0

Then the solution u(z,t) of Problem (1.1) with the extended source van-
ishes for all t > T. for some T, > T, as the total source applied is zero.
With this modification of Problem (1.1), each integral with respect to ¢
in the last term of (3.11) is the integral over a finite interval. Therefore
the integrals of both of the second term of the right-hand sides of Theo-
rem 3.2 and Theorem 3.3 are over a finite interval, so they are bounded
in view of Remark 3.1. Finally, note that the solution u(z,ty), to < T of
Problem (1.1) depends only on u(z,t) and f(z,t), t <t,. So the solu-
tion u(z,t) of the modified problem, in fact, is the same as the solution
of the original problem for all (z,t) € Q x J.
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