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An Efficient Index .Structure Supporting Structure Queries for
Video Documents

Yong Kyu Lee'

ABSTRACT

Recently, much attention has been focused on video databases. Video documents also have a hierarchical logical
structure like text documents. By exploiting this structure using structure queries, users can obtain greater benefits than
by using only content queries. In order to process structure queries efficiently, an index structure supporting fast video
element access must be provided. However, there has been little attention to the index structure for video documents. In
this paper, we present a tree-structured video document model and a new inverted index structure for video documents.

We evaluate the storage requirement and the disk access time of the scheme and present the analytical results.

1. Introduction

Much attention has been focused on video
databases including (13, 16, 18]). Video docum-
ents also have hierarchical structures as with
text documents (12, 17). The video elements, s

uch as segments, events, and shots, compose a

video document. By exploiting this structure u

sing structure queries, users can obtain greater
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benefits than by using only content queries. St
ructure query languages which traverse the log
ical structure of text documents have been pro
posed in (4, 10]. However, there has been littl
e attention to the structure query in video dat
abases. In this paper, we propose solutions for
some issues in video databases including video
document model, structure query language, an
d index structure.

In order to support video structure queries,
we have to maintain information about video

structures. For this purpose. we use a
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tree-structured video document model which
forms a video tree with video elements for
each video. Then, we assign a specially
designed unique element identifier (UID) to
each video element. By letting the UID carry
information about document structure, the
UID’s of the ancestor or descendent nodes can
be obtained directly from the UID. This
scheme has advantage over those used for text
document structure query processing in (1, 3]
because we do not use other data structures
such as parse trees and database relations.

Many index structures supporting fast data
retrieval have been proposed for databases and
information retrieval systems (2, 5, 8, 11, 15,
16). We also need an efficient index structure
for video databases. Video indexes can be built
from video annotations and captions. In order
to perform structure queries efficiently, an
index structure which supports fast element
access must be provided. For this purpose,
index structures based on the conventional
inverted index can be used. Sacks-Davis et al.
{14] have proposed some possible inverted
index structures for structure query processing.
However, every scheme requires considerable
storage overhead to store document element
identifiers in the inverted list.

In this paper, we propose a new inverted
indexing scheme which reduce the storage
overhead considerably. We analyze storage
requirements and disk access times of this
scheme. Our approach can be applied to text
databases as well.

2. Related Work

Oomoto and Tanaka (13] have presented a
video-object database system named OVID. In
their system, users define attribute structures
for video objects without defining a specific
database schema. By using the concept of

interval inclusion, annotations of a video
object can be inherited to its subobjects. In
order to create new video objects, they have
defined composition operations such as interval
projection, merge, and overlap. A query
language named VideoSQL has been used to
retrieve video objects based on the content.
However, they have not considered structure
queries and an index structure supporting the
interval inclusion hierarchy.

Weiss et al. (18) have defined an algebraic
video data model. A video segment can be
associated with descriptions extracted from
text captions or images, and with users’
annotations or structural and temporal
information between video segments. The
descriptions and annotations are wused to
support content based access to video. Even
though they support the query based on the
video structure, it is primitive compared to the
structure queries of the text document system,
and it can be supported only if users associate
the structural information to the video
segment. Moreover, they have not described an
index structure supporting video segment
access.

3. Video Document Model

Video documents have a hierarchical logical
structure like text documents. The structure of
video documents has been studied in (12, 13,
17). The video elements, such as segments,
events, and shots, compose a video, which has
a hierarchical structure as shown in (Fig. 1)

(Fig. 1) Video Element Hierarchy



The video model, represented as a tree,
forms a conceptual video structure on which a
query language is based. Users are able to
traverse the video tree through queries which
exploit the structure.

An example of the video tree according to
the video element hierarchy is illustrated in
(Fig. 2)

(Fig. 2) Video Document Tree

We interpret a video structure as a k-ary
tree (7] and assign each element a UID
according to the level-order traversal order.
For example, for the video tree of (Fig. 1), we
assign UID’s as {(Table 1) assuming a 3-ary
tree. Because we assume the tree is complete,
there are some virtual nodes which do not

exist,

(Table 1) Element ldentifiers for the (Fig. 2)

element| UID lelement| UID
a 1 k 17
b 2 1 18
C 3 m 20
d 5 n 21
e 6 0 22
f 7 P 23
g 8 q 24
h 9 r 26
i 14 s 27
i 15 t 28

The UID of the parent or i-th child of a
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node whose UID is i can be obtained by the
following functions.

parent(i) = t Ji;kZl+1 J

child(i, j) = k(i-1) +j + 1

These functions are used during structure
query processing to evaluate the branch and

list expression.
4, Video Structure Queries

Our query language(9] has a similar format
to the SQL. In the query, users specify
required video elements using two kinds of
path expressions: branch expression and list
expression. The branch expression is for
moving forward and backward through the tree
branches, and the list expression 1is for
selecting an element from a list. The following
are some examples.

(O Find the events which have a shot about
“war.”
find e
from vivideo, e:v.segment.event
where exists(e.branch(1]) contains “war”)
O Find the segments whose last event
contains ‘farewell.”
find e.branch(-1)
from v:ivideo, e'v.segment.event()]
where e contains “farewell’
() Find the first shot of the events which
contain “mountain.”
find e.shot(1)
from v:video, e:v.segment.event
where e contains “mountain”

In the above example, the branch expression
branch{1) denotes the nodes reachable with
one downward jump and branch{-1] means the
parent node. The link expression event())
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represents the last event and shot(1] the first
shot.

5. Video Index Structures

Since users want to access any kind of video
element in the video tree, it is necessary to
build an index structure supporting element
access from video annotations or captions.
Suppose that a video has three leaf nodes with
keywords extracted from annotations as shown
in (Fig. 3)

]
bird bird .
riger tiger t;n’g
dog lion =

(Fig. 3) Video Tree with Keywords

Even though an internal node has no
associated data, the data of its subtrees
should be considered- as its data. Thus, the
index for each node is as follows:

index(A) = (bird, tiger, dog. lion, fish}
index(D) = {bird, tiger, dog}

index(B) = (bird, tiger, dog, lion}
index(E) = {bird, tiger, lion}

index(C) = {bird, fish}

index(F) = {bird, fish)

5.1 Inverted Index with Replication(IR)

This approach replicates all keyword items
of the children to their ancestor nodes as
shown in (Fig. 4)

In this scheme, the inverted list for a
keyword should include all UID’s of the
elements which contain it. Thus. the inverted
list for the example is as follows:

o
ird
tiger
dog
lion
fish
= /\ -
bird
tiger b"'ﬁ
dog fis
lion
D /\ = | i
bird bird :
tiger tiger ?_n’ﬁ
dog lion i

(Fig. 4) Inverted Index with Replication

inverted-list(bird) = {A, B. C, D, E, F}
inverted-list(dog) = {A, B, D}
inverted-list(tiger) = {A, B, D, E}

{A, B, E}

{A, C, F}

inverted-list(lion) =
inverted-list(fish)

52 Inverted Index with Inheritance(ll)
The previous approach has many
duplications in the inverted list. However, we
need not keep the element identifiers of the
internal nodes in the inverted list since we
can calculate the ancestor identifiers from the
leaf identifiers using the parent function.
Moreover, by using the fact that the child
nodes of a node can have some keywords in
common, we can remove all the duplications of
index terms from the inverted list. This is

illustrated in (Fig. 5)

A
hird
B C
tiger fish
. / \ - _

dog lion

(Fig. 5) Inverted Index with Inheritance



We can construct the inverted list for the
example as follows:

inverted-list(bird) ={A}, inverted-list{(dog)={D}
inverted-list(fish) ={C}, inverted-list(lion)={E}
inverted-list(tiger) ={B}

Using the II inverted list, we can access any
element using the parent and child function.
The index of a node can be calculated as
follows:

INDEX = INDEX(itself) U INDEX(ancestors) U
INDEX(descendents).

This scheme is much better than the IR
scheme since it removes duplications of video
element identifiers in the inverted list.
Moreover, this scheme supports inheritance of
indices between ancestors and descendents. If
users create annotations for internal nodes,
they are inherited to descendent nodes. Also
the keywords belonging to all the child nodes
promote to their parent node.

6. Cost Comparison

We analyze the storage requirements and
disk access times of the IR and II. The
inverted index model which will be used for
the analysis is shown in (Fig. 6)

postings Kst
keyword address
elem id's
non-
leaf
odes

docidielemid’s

B+-tree postings list

(Fig. 6) Inverted Index Structure
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The symbols of (Table 2) are used in the
space and time expressions representing the
storage requirements and disk access times
respectively.

(Table 2> Symbols and Definitions

symbol definition

d degree of B + -tree
height of document tree J

degree of document tree

~ x|

height of B ' -tree

m average number of keywords in a node

7 go |total number of documents in database

7 hey, (total number of keywords in database

D rate of promoted keywords from children to parent

S biock |block size in bytes

$ docia |document identifier size in bytes

S clemiq |€lement identifier size in bytes

S entry |table entry size in bytes

S ey |average keyword size in bytes

S ptr pointer size in bytes

S e set size of document variable

t ,undom|random disk block access time

t s, |sequential disk block access time

u rate of unique index terms in children nodes

6.1 Storage Requirement

The storage requirement of an index
structure is the sum of those required for the
B " -tree and postings list.
S index = S btree+ SPOStmg
The B -tree has the leaf and internal nodes.

S btree = S leaf+ S internal+

Since the total number of keywords in the
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database is 7., the number of disk blocks

required for the leaf nodes is

(Skey+sptr)*n key
S block

S leaf =

If we assume that the height of the B tree
is 1 and the degree is d. then the number of
disk blocks for the internal nodes is

— I-1_
S internal — gdl = % .

The degree d can be calculated as follows:

. [ S block J
S kgy+ S ptr

The storage requirement for the postings list
for the database is

N ey®*S iy }

S ting
boshing S block

where
S id™= Ndacperkey* N docid+ Npostperkey* S elemid.
The number of postings per keyword is

N pastperdoc* 7 doc

N =
postperkey W hey

Now we calculate N gogersey, the average

number of documents per keyword. Here u is
the rate of unique index terms among the child
nodes which will be indexed in the parent

node. The range ;)f u is —}; <u<l.

If u is close to —15 the document is very

dense, that is, the elements of the document

are closely related to each other and have very
similar index terms. When u is large, the
document is sparse, that is, the elements of
the document are not closely related. Assume
that the average number of index terms of a
leaf node is m. Then the number of index

terms of a node at level (h - 1) is A*xm*u.

The number of index terms of a node at level i is

B w0

Since the number of nodes at level 1 is ki_l,
the total number of index terms at level i is

ki—l*khfi*m*uh*i__:kh‘l*m*uh*i.

Because the number of index terms of a root
node is

1

»

k h—l*m* u A~
the number of documents per keyword is

h_ —
B lmr gt Ve g

nkzy

N docperkey —

Now we calculate N pgporanc. the number of

index terms per document, for each inverted
indexing scheme.

6.1.1 IR

The total number of index terms per
document is

Npostperdoc: g:lkh_l*m* U b

= k" Tems S‘;u’
=

=k" Lem 4+ k" e ‘z"lu’
~



h-1 h-1 wux(1—u*!
E" txmt+ BT xmx ,u+1.

1—u
B e u=1.

6.1.2 11

For the analysis of the II, we introduce a
parameter p which represents the probability
that an index term is promoted from the child
nodes to their parent node. The range of p is
0<p<i.

Then, the number of index terms of a leaf is

m— m*p.

The number of index terms of a node at level i

is
mrp T p i
The total number of index terms at level i is

B e pt i T g p it

because the number of nodes at level i is
pil

And the number of index terms of the root

. h—
node is m*p" !,

Thus, the total number of index terms of a
document is

N postperdoe = g(k,-_l*m*phw_kzﬂ*m*ph—,ﬂ)
+omrptt

B Va— gpf*(kh—,_kh—i—l).

6.2 Disk Access Time

The disk access time required to retrieve
the postings list of a keyword is the sum of
the B -tree access time and postings list
access time.
T ewrcn= T btree T posting-

The disk access time of the B -tree is

T btree = Ixt random »

The disk access time of the postings list of a
keyword is

T posting t random + (N blockperkey l) * tseq;

where the number of disk blocks of the
postings list per keyword is N ppchperhey =

[ Sp).

nkey

6.3 Analytical Results

We compare the storage requirements of the
inverted indexing schemes by using the
parameters as shown in <Table 3) The disk
access times are based on the Conner CP30200
model (6). We assume that the database has
100.000 video documents with 50,000 keywords.

(Table 3) Parameter Values

symbol value symbol value
d 64 S docid 4
h 5 S elemia 2
k 5 S entry 4
! 3 S key 12
m 10 S ptr 4
7 doc 100,000 S ser 50
7 oy 50,000 ¥ random 19 ms
Jo) varied tseq 0.7 ms
S block 1,024 u 06 J

(Fig. 7) illustrates the storage requirements
of the IR and II when u is 0.6. It shows that
the 1T has much better performance. It shows
that the index size of the II decreases linearly
as the value of p increases.

(Fig. 8) illustrates the average disk access
times of the two schemes, when u is 0.6 and

any arbitrary keyword index is accessed. It



R RN

i
g
10

w2 R MSH M5E=(985)

J

-~O~IR
-l

é
L 4

L 3

o
v

index size(blocks)
%

0 . " -
A 02 03 04 05

prorrotion rate(p)

(Fig. 7) Inverted Index Space Requirement
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(Fig. 8) Average Disk Access Time

shows that the Il has better performance. We
also have obtained similar results with other
values of u.

6.4 Experimental Results

Experiments have been performed on a SUN
SPARC station with a local Conner CP30200
disk. We have experimented in a single user
environment after building the IR and Il
inverted index structures. We have assumed
the database contains 100,000 documents with
50,000 keywords, the same parameters as the
analysis. (Fig. 9) shows the results of the
experiment obtained by accessing the index for
a given keyword 100 times each and averaging
the access times, when u is 0.6. The results

are quite similar to the analytical results.

14052 o——06——5 D
120 ~
£ 100 ' v ¢
g 80 -—0—|R
; 80 —— ||
[
S 4
S
S 2
o
TS 0
01 02 03 04 05

promotion rate(p)

(Fig. 9) Experimental Average Disk Access Time

7. Conclusions

Our video model represents a video as a
tree structure of video elements. Based on the
model, a new structure query language which
uses path expressions has been defined. Users
can freely traverse the logical paths of video
documents and retrieve any interested portions
of a video or a group of videos with the
powerful expression.

We have used unique element identifiers for
the video structure representation. This
scheme is especially efficient for the evaluation
of the branch and list expressions because it
does not require database access, compared to
the previous schemes which store the structure
information into the database as tuples.

We have proposed an efficient inverted index
structure supporting structure query for video
documents. For performance evaluation, we
have presented the performance -equations
representing storage requirement and disk
access time, and have shown the analytical
results. The proposed index structure has the
inheritance property of the object-oriented
concept. By having this property, it can reduce
the index space and disk access time
considerably.
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