162 sndEMA S =21 H5E Hb=(385)

Wisls W ¢y

o £ Alt
— o b |

)

Relaxed min-max <

8 o

5_’— =FAMHE relaxed min-max heapg WEA717] 93td A2 AF5T2RY MAD relaxed min-max-pair §
& A walol, FHel relaxed min-max &, & 2717} nd relaxed min-max nheap¥ 17}7} k¢l relaxed
min-max kheapo& TAE ¢4 &9 F2 WA 98 ¥E dmelEe AAsua 3. B =FedAE (99
w0 2 BE] relaxed min-max 8% W A7)17] el o449 blossomed treedt lazying W& AAsAE WIS
= ARe Ee ANSEY. dRdez B m=Ed AAE PHEe max(27 [(m+1)/4]1) 718 ZRAME o] 8F AL,
A B2 Olog(log(n/k)) xlog(hk))¥e & #7b itk zElz A7t A2 dE 5 79 relaxed min-max
heapo 2 TAH guWgzle] HolHE HFA7|7] AalM, MasPar olldlA] 64719 Z2AXNE o] &5te] 482 At
35.2052] Speedupg ANt

A Parallel Algorithm for Merging Relaxed Min-Max Heaps
Yong-Sik Min'

ABSTRACT

This paper presents a data structure that implements a mergable double-ended priority queue : namely an improved
relaxed min-max-pair heap. By means of this new data structure, we suggest a parallel algorithm to merge priority
queues organized in two relaxed heaps of different sizes, n and X, respectively. This new data-structure eliminates the
blossomed tree and the lazying method used to merge the relaxed min-max heaps in [9]. As a result, employing
max(2! [(m+1)/4]) processors, this algorithm requires O(log{n/k)Xlog(n)) time. Also, on the MasPar machine, this
method achieves a 35.205-fold speedup with 64 processors to merge 8 million data items which consist of two relaxed
min-max heaps of different sizes.

1. Introduction

Priority queues have traditionally been used
for applications such as branch-and-bound
algorithms, discrete-event simulation, shortest
path algorithms, multiprocessor scheduling and
sorting. A priority gueue is an abstract data

14 3 9 sAdetE ARy
EEAS 19973 1149 4%, AlATehE £ 1998 39 149

structure that easily allows deletion of the
highest priority item and insertion of new
items. A heap is a complete binary tree such
that the priority of the item at each node is
higher than that of the items of its children.
A heap provides an optimal implementation of
a priority queue on uniprocessor computers.
Deletion of the highest priority item and
insertion of a new item can each be
accomplished in O(log n) time on an n-item

heap (4].

The merge operation of a heap is supported
by the leftist heaps proposed by Crane, and by
the binomial queues proposed by Vuillemen.
Other priority queue implementations include
the skew heap, the Fibonacci heap, the relaxed
heap, and the pairing heap. Recently Olariu et
al. (3) suggests a double-ended priority queue
implementation called the min-max-pair heap,
which supports sublinear time merging. Y.
Ding and M.A. Weiss (9] gave a priority
queue implementation called the relaxed
min-max heap, which supports all the
priority operations. The key idea of this
method is that, by properly relaxing the
order restrictions for min-max heaps, it can
merge two regulary sized min-max heaps.

To make efficient use of a parallel computer
for priority-queue-based applications, one
needs a parallel version of the priority queue,
which would allow multiple concurrent
insertions and deletions. There have been
various parallelization efforts on the heap
operations for a shared-memory parallel
computer (6]. Rao and Kumar proposed a
practical scheme that allows O(log n)
processors to be active simultaneously on a
heap. Biswas and Browne present a scheme
that can keep O(log n) processors active on a
heap. Jones also presents a scheme to keep a
similar number of processors active, but the
heap access time in his scheme is O(log) in
only an amortized sense. Nao and Zhang (8]
propose a parallel heap running in O(n/p +
log n) time with p = O(n/log(n)) processors on
an EREW-PRAM.

This paper provides a new data structure —
the improved relaxed min-max-pair heap --
that efficiently supports the merge operation of
the priority queue. This new data structure
eliminates the blossomed tree and lazy merging
method used to merge relaxed min-max heaps

Relaxed min-max &g 2glsl= 28 ¥12|E 1163

in (9], and proposes a parallel algorithm to
efficiently merge two relaxed heaps of different
sizes. Using max(27'.[(m+1)/4])’s processors,
the new algorithm requires O(log(n/k) Xlog(n))
time. We achieved a 35.205-fold speedup, with
8 million data items on the 64 processors
MasPar.

The rest of this paper is organized as
follows. Section II describes the parallel
algorithm for merging two relaxed min-max
heaps of size n and k. Section III discusses
the results of this method and Section IV gives
conclusions.

2. Merging Relaxed Heaps in Parallel

We first give definitions related to merging
the relaxed min-max heaps and then define a
new data structure: namely, the improved
relaxed min-max-pair heaps. Here, the relaxed
min-max nheap is regarded as an nheap and
the relaxed min-max kheap as a kheap. We
define a perfect heap as a heap with 2' - 1
elements, in which all leaves are on the same
level: otherwise. the heap is non-perfect. The
relaxed min-max pheap is rooted at p, similar
to the subheap rooted at p. We call it a
pheap. Let the size(heap) refer to the number
of elements the heap contains, and the height
be defined as llog(size(heap))]. We introduce a
function h(heap) which returns the height of
the heap. We will define slots of those leaf
positions in nheap which are to be filled by
merging processes (7).

A relaxed min-max tree T is a min-max
labeled tree such that, for any node v in T,
neither children(v)} nor grandchildren(v) may
contain more than one relaxed nodes. Clearly,
any subtree of a relaxed min-max tree is also
a relaxed min-max tree. This example is
shown in Fig. 1{(a). A min-max-pair heap is a
binary tree H featuring the relaxed heap-shape

1164 SRR MRER =FX] Mo H5=(985)

property, such that every node in H has two
fields (called the min field and the max field)
and such that H has a min-max ordering. For
every i(l<isn), the value is stored in the min
field of H(i}: similarly, the value stored in the
max field of H(i) is the largest key stored in
the subtree of H rooted at H{i].

We describe the new improved relaxed
min-max-pair heap’s(T) property as follows:
(1) T has the heap-shape: (2) T is a relaxed
min-max tree: and (3) T is the min-max-pair
ordered. But, in order to give the min-max
value of each level, we proceed from the root
to leaves. And so, in the present level and the
following level, we choose the min-max-pair.
When the node chosen becomes the root node,
its child nodes must be processed until the
leaf nodes have been reached according to the
relaxed min-max-heap. The improved relaxed
min-max-pair heap is developed and used only
to merge relaxed min-max heaps. An example
of the new, improved relaxed min-max-pair
heap is shown in Fig. 1(b).

O)—— ®
/N /
= ®

@ O
S /\
@@@—'min @@@

{2] a relaxed min-max heap {b} an improved relaxed mis-max heap

pd

S

~o
/

(Fig. 1) Comparison between a relaxed min-max heap
and an improved heap.

Next, we consider a merging method conce
-rning the relaxed min-max heaps. For the
sake of clarity, we first show how to merge
two perfect relaxed min—max heaps of an equal
size. We show how to merge two relaxed min
-max heaps of different sizes. In the case of
merging two perfect relaxed min-max heaps of
an equal size, however, this method’s process

is the same as the sequential one{7) which tak
es two heaps, an nheap and a kheap, each of s
ize k{=n), and produces a new heap with 2k e
lements. With a single processor, it runs in O
(log k) time.

We now consider a simple case of inserting
a-relaxed min-max heap. of k.elements.. kheap,
into a relaxed min-max heap of n elements,
nheap. Without loss of generality, assume that
k"'{ n. We proceed with three phases of
merging the relaxed min-max heaps as follows.
In the first phase, determining the level of the
root of slots that have k by the merging
process in nheap, we have to allocate the
nodes of the level to each processor. Second,
the pheap (that is, the subheap of nheap that
is allocated in the nheap) and the k'heap
(that is, the subheap of kheap that is
allocated in the kheap) are being merged. At
this point, the merged new subheaps(pheap
+k’heap) satisfies the relaxed min-max-pair
heap’s condition. In the last phase. we connect
the newly merged heap to a nheap, which
exists in the shared memory, and construct
the relaxed min-max heap condition on the
nheap.

2.1 Level-Find Algorithm

In the first phase of the merging process, in
order to determine the location p’s node in
each processor, we use the level of nheap:
then, we classify nheap as a perfect heap or
nonperfect heap.

a. A Perfect Heap

In the process of selecting the location p of
the node, we must fill out a characteristic of
the heap from the leftmost node of nheap in
order to fill out the node of kheap, since an
nheap is a perfect heap. In this perfect heap,
there are two steps to find the location p of
the node. In the first step, we determine the
number of processors allocated to find the

location p in each processor. The number of
processors, however, is equal to the number of
leaves in kheap. In the second step, we select
the locations as the number of processors
determined. Since an nheap is a perfect heap,
the first processor is located te the leftmost
leaf or subheap of the nheap. Also, each
processor must know the number of slots: a
global variable S(PE().i=1,2.....2"", where 1
is the number of levels in kheap) is used to
store the number of slots. This procedure for
finding p takes O(1) time.

procedure parallel-perfect-level-find
/* p:the number of processors,
PE(i):ith processor(lsisp),
S(PE(i)): the number of slots which ith
processor has */
(1) /* determine the number of processors */
p = gihikhear))
(2) /* determine the location of PE(i) in an
nheap */
for all i(l<i<p) do in parallel
— 2‘h(nheap%l‘ +q- 1
PE() = the ith location of an nheap
allfor
(3) /* determine the number of slots which PE(i)
has */
for all i (1<i<p) do in parallel
S(PE@)) = the number of slots in PE(i)
allfor
end

b. A Nonperfect Heap
If nheap is a nonperfect heap, three steps

are necessary to select the location p of the
node. In the first step, we determine the
number of processors to allocate the location p
to each processor. In the second step, we
determine the location of the determined
processor. Then, using the difference of the
height between an nheap (h(nheap)) and a

Relaxed min-max 88 @ishs 8@ ¢uelsE 165

kheap (h(kheap)). we find the location that is
the root of the subtree that is not a first
complete binary tree from each subtree of the
level determined. Then, if the difference
between the size of the subtree and the slot is
not less than 1. we find the lower subtree and
select the nonperfect heap which has the
difference of 1. We allocate the selected
location vo the first processor.

In the second swep. we allocate the next
location determined to the next processor
and so on. Then, the number of processors
allocated is equal to the number of p
determined in the first step. The number of
slots allocated in each processor is set to
S(PE(i)) such as in a perfect heap. The
following pseudo algorithm shows how to
select the location p.

procedure parallel-nonperfect-level-find
begin
(1) /* determine the number of processors */
p = ghikheapD
(2) /* determine the location of the first
processor */
(2.a) level = h(nheap) - h(kheap) -1
if(level{= 0) then level = 0
pl = 2% /* calculate the current level
*/
(2.b) if(nheap is not a leaf)
(a)if(the subheap of pl is a perfect heap)
then pl=pi+1:go to step (2.b)
(b)LD=size(pl’s subheap)-size(pl’s slot)
{cHf(LD<1) then go to step 2.c
(dif(the subheap of 2°pl is a perfect)
then pl=2"pi+1 else pl=2%pl
(e)go to step 2.b
(2.¢) PE(1)=the location pl of an nheap
S(PE(1)) =the number of slots in PE(1)
(3) /* allocate the location from 2nd processor
to pth */
for all i (2<i<p) do in parallel

1166 St dEM2IEs =EX M6A Hb=(985)

PE(i) =pl of nheap + (i-1)’s location
S(PE(i)) =the number of slots in PE(i)
allfor
end

Theorem 1. The above procedure for finding
the location p requires O(2'") processors.
Proof. To determine the number of processors,

. . hikh
we execute the instruction such as p:2((o

Py step 1 of the above procedure. Then the
height of kheap corresponds to the level. There

Z(h(kheap)*l) (i~1)

fore, means 2 ', which is the maxi-

mum number of nodes in one level of kheap.m

Theorem 2. It takes O(log(n/k)) time to
execute finding loeation p.

Proof. The step 1 and 3 of procedure
parallel-nonperfect-level-find needs O(1)
time. In step 2, (2.a2) takes Of(1) time,
which is the difference between the height of
nheap and kheap, and (2.b) defermines the
location p of the root node of slots in nheap.
The process to de}ermine the path from the
root of a nheap to location p is
log(m)-log(k) =log(n/k) time. (2.c) takes
0OQ1) time. This procedure, therefore, takes
O(log(n/k)) time.m

2.2 Merging Algorithm

Using the processor allocated in the above
section, we suggest a merging method between
k'heap which is the subheap of kheap and
pheap, the subheap of pheap.

a. The Allocation Method of Subheap in PE()

We have suggested a method to point out
the root of a subheap in an nheap. Using this
method, we execute the following instructions
in order to move the subheap which is a part
of nheap to the local memory.

for all PE(i) (l<isp) do in parallel
repeat

move the subheap which is constructed
with nheap(the location of PE(i)) to the
pheap of each processor
until(nheap’s last node)
allfor

In order to merge k’heap with pheap, we
have to select k’heaps from kheap in the
shared memory and move them to processors.
Then, the number of k’heaps that are to be
assigned to a processor depends on the number
of slots in that processor. To execute this, we
point out the location of kheap, which has the
ith location indicated by the total number of
slots already assigned to the previous
processors. Then, from the location of
kheap determined, we create the merged
k’heap. The merged k'heap is constructed
with the number of slots to be assigned at
the local memory of each processor .

For example, in Fig. 2.(c), we assume that
a circle represents an internal node. We store
the number of slots of each processor to
S(PE(i)). To determine the location of kheap
indicated in each processor, we select the
location of kheap using X(PE(i)). Then each
X(PE(i)) is initialized to 1. If S(PE(Q)) =
{2.2,1}, it represents the value of S(PE(i)) in
Fig. 2. Since the number of slots in the first
processor is S(I) = 2 and the location
indicated in kheap of the first processor is
1{(X(1) = 1), the number of slots indicated by
the first processor is 2(S(1) = 2) for the first
location of kheap.

Since the number of slots in the second
processor, PE(2), is S(2) = 2 and the location
indicated in kheap of the second processor is 3
(which is the sum of S(1) = 2 and 1), it
points out two nodes from the third location of
kheap which has the same number of slots
(that is, 2(S(2) = 2) as the second processor.
Also, the third processor PE(3) has the

number of slots S(3) = 1 and X(3) =
5(2(8(1))+2(S(2))+1); that 1is, it indicates
only one node, since the third processor points
out the number of slots(S(3)=1) in the 5th
location of kheap. The following pseudo-
algorithm describes the above things.

procedure selection-kheap's point
begin
int X{1:n]
for all PE(i)(1sisp) do in parallel
(1) /* determine the location in the kheap
which each processor has */
(1.a) for all i(1sisp) do in parallel
sum=0
(1.by for j=1to (1-1) do
sum=sum+S(j-1)
endfor
X(i)=x[i)+sum
allfor
{(2) /* move the number of slots determined
from the kheap */
(2.a) for all i (1<isp) do in parallel
(2.b) for j=X[i] to (X(i)+8(i)-1) do
move the jth location of kheap
to proper PE(i)
endfor
allfor
end

Theorem 3. The above procedure runs in
O(max{p, the number of slots which one
processor has)) time.

Proof. In the above procedure, (1.a) takes
0(1) time and (1.b) runs in O(p) time since it
runs p-1 times using p’s processor. So, the
first step runs in O(p) time. (2.a) takes O(1)
time, and (2.b) takes O(the number of slots
which one processor has) time since it occurs
as the number of slots from the proper
location of kheap. As a result, it runs in
O(max(p, the number of slots which one

Relaxed min-max 88 Hetsts B8 ¢u2lE 1167

processor has)) time.m

Next, we consider that a pheap and a
k'heap are being merged.(see Fig. 2.(d)] The
following pseudo algorithm describes this:

procedure parallel-union-heaps(pheap, k'heap,
newheap)
begin
for all i(1<i<p) do in parallel
(1) if(size(pheap)) size(k'heap))
then newroot = { last element in pheap |
change the location of pheap
and k’heap
else newroot = { last element in k'heap}
(2) distribute pheap to temporary location t
(3) place newroot at pt
(4) copy to to leftson of newheap(pt)
(5) copy k’heap to rightson of newheap(pt)
{6) sift-up(newheap)
allfor
end

This procedure constructs a heap as we
treat the last node of the higher heap among
two heaps (that is, pheap and k’heap) as the
root of a newheap. We construct the newheap
(that is relaxed min-max heap using
creation function (9]) according to the
minmax condition. At this time, we change
the slot’s min-max value from the k'heap
which is merged: that is, we change the
min-max value of the slot’s elements to its
min-max level’s value. Changing its value
changes the kheap’s remaining elements. We
acquire the resultant relaxed min-max heap
while the newheap moves to the proper
location of the nheap that is located in shared
memory. But, if the root of the newheap is
changed, an nheap does not satisfy the relaxed
min-max heap condition. To solve this
problem, we use a local variable cv. If the root

1168 SR FHEMEIES| =BX] HOEH M52(985)

of the k'heap is changed after merging the pheap
and the k'heap, we set the value of cv to 1.
Otherwise, the value of cv is 0. To make the
relaxed min-max heap condition, we then use the
creation function, and we repeat this method
until all ¢v’s in each processor are equal to 0.

procedure construct-twoheaps

begin
(1) n=loglsize(nheap after merging)]
(2) for 1=n down to 1 do

= p(h(nheap)-D
s=0
{3) m=min(lsize(nheap after merging))/2,
2*%k-1)
(4) for all j(ksjsm) do in parallel
p=2j

if(p{|size(nheap after merging)]) and
{(nheap(p))nheap(p+1)) then p=p+1
if(nheap(p){nheap(j))
then exchange(nheap(p).nheap(j))
lock s
s=g+1
unlock s
allfor
(5) while(s<(n-k+1))do
wait
endwhile
endfor
(6) for all i(1<isp) do in parallel
creation(PE(i)’s subheap)
if(the subheap’s root node is exchanged)
then cv=1 else cv=0
allfor
(7) for all cv in PE()=0 do in parallel
return(relaxed min-max heap)
allfor
allfor
end
Theorem 4. The above procedure requires [
{m+1)/4] processors.
Proof. The number of nheap after merging
is m(=n+k) and the height is 1

(=h(nheap)+1). The maximum number of
nodes in this heap is I 27 = 2! 1< m.

The maximum number of processors needed
to process in parallel is 2% since the number
of nodes in level 1-1 requires them: so, it is
"< [(m+1)/4]. Therefore, the number of
processors needed is [(m+1)/4].m

Theorem 5. The above procedure has the
time compexity of O(log(n/k) Xlog(n)).

Proof. In the above procedure, step 4 takes
0(1) time and steps 2 through 5 take O(log n)
time. Further, since step 6 takes log(n) time
as a sift-up function, it runs in O(log(p+k’))
time because the subheap is pheap and k'heap.
Steps 1 through 6 need the value of cv#0: that
is, it does not change the root node of
the subheap in all processors. This is what we
indicated from the root of the nheap to
location p which the processor pointed out.
The time complexity is O(log(n/k)) as seen in
theorem 2. Therefore, it runs in O(log(n/k) X
log(n)) time.w

Next, we consider the space complexity of
the algorithm to merge two relaxed min-max
heaps in parallel. First, we consider the size
of nheap and kheap, which has 2n and 2k. So,
it is O(2n+2k) space. Second, when we think
of the local memory that each processor has, it
requires O(p+k’) since it needs the pheap(size
is p) and the k'heap(size k’). Therefore, the
total space needed is O(n+k+the number of
processor X (k" +p)).

3. Experimental Results

The MasPar MP-1 system, . which was
developed by MasPar Computer Co. in 1990, is
an- SIMD-SM machine with 8K processors.
Each processor has a local memory of 64K
bytes. The control unit of each PE(Parallel

Processor) is called ACU(Arithmetic Control
Unit). The ACU and the PEs together are
known as the DPU(Data Parallel Unit).

@ @
N RN
® B P @
/ N\ /N 7\
DB D ® ® D
= R b
> B @ @ @
B R hi
D @ D B @
® o)
/ N\ N
@ 3} @ @
/N /N /N /N
shpognee
POD 60 bodod
® @
/N /
@ @ @ P
/N /N /N /N
®O 0 & OOD®
® o8
SN &
@/\@ 69/\@ G/\ CD/\Q
SOBodbd®dOd0deS

B

e

(Fig. 2) The example of relaxed min-max heaps with different

sizes.

It is attached to a DEC 5000(known as the
Front End) to allow user interface.

All compilations are carried out on the
Front End. The DPU processors communicate
with each other using two mechanisms @ X-net

Relaxed min-max g HBHEisie HE ¥T2IE 1169

and Router. This mechanism is supplied by
MPL{MasPar Programming Language) which is
an extension to the programming language C.
The MasPar system provides a transparent
control mechanism that automatically
schedules parallel tasks on PEs, optimizes the
use of hardware resources and manages all
data motions.(11]

To implement this algorithm on the MasPar,
we used randomly generated 32-bit integers
with various distributions. No tests were made
for duplicate elements, of which there were
undoubtedly a few. The size of the arrays to
be merged ranged from 0.1 million to 8 million
elements. Experiments were done using 2, 4,
8, 16, 32 and 64 processors on the MasPar
machine. Each data point presented in this
section was obtained from the 20 program
executions in the average, each on a different
set of test data.

We developed a sequential program for
merging relaxed heaps, which provides an
optimal sequential merging for the relaxed
heaps. We use the speedups to evaluate a new
parallel algorithm for merging relaxed heap’s.
Speedup is defined to be the time elapsed from
the moment the algorithm begins to the
moment it terminates (2). It is reasonable to
assume that the time for merging relaxed
heaps using the sequential method with a PE
is as follows:

te= ¢ (log(n/k) x log(n)),
where ¢ is a constant indepent of size n.
Sequential times for the lists with more than
0.2 million elements were calculated using the
formula:

_ log(n/k) ¥ log(n)
tee = TTog(100,000) x log (100, 000) * tse (100.000),
where the size of k simply represents half of
the total size. This size’s value is different,
with the actual’s size and 0.02 million < n < 8
million and t5(100,000)= 5.304 seconds. Note

1170 s=dEHelstal =24 HbT H5z=(985)

that if one uses this formula to compute
£(200.000). the result is almost a perfect
match with the corresponding experimental
time.

Table 1 shows the time required to merge.
Fig. 3 plots the speedups achieved. As the
problem size increases, task granularity
increases. So, offsetting the overheads of the
algorithms results in better speedup. Merging
two relaxed heaps of 8 million elements with
64 processors yielded a 35.205-fold speedup
over the use of one processor. This method
was implemented in each processor’s local
memory. Global memory was used to communicate
the code.

(Tabie 1> Time to merge two relaxed min-max
heaps(units:seconds).

ntk PE 1 2 4 8 16 32 64
100.000| 5.304 | 310174 1.723] 1.2578| 0.8556| 0.8021| 1.357
200,000; 11.359 | 6.4908| 3.508 | 2.5061| 1.6707 0.848 | 1.304
400.000| 24.4066 | 13.559 | 7.136 | 4.8547| 3.034 | 2.593 | 2.729
800,000{ 52.012 | 27.374 | 15.916 | 8.6029| 5.8523| 3.902 | 3.0664

1,000,000f 66.3 - 1841 | 1315 | 8.221 | 7.4736| 4529
2.000,000) 140.58 - — | 28.116 | 16.836 | 11.453 | 5.813
4,000,000] 297.1305| — - - - 18.57 | 10.317
8,000.000] 627.6686| — - - - - 17.829

4. Conclusion

This paper has presented an improved
relaxed min-max-pair heap, a data structure
that implements a mergeable double-ended
priority queues. Among other operations, it
supports very efficient merging. Especially, the
new data structure suggested in this paper
eliminates the blossomed tree and lazy merging
method to merge the relaxed heaps method
suggested in [9). As a result, employing max(2"™
[(m+1)/4]) processor, the time complexity is
O(log(n/k) Xlog(n)) and the space complexity
is O(n+k+the number of processor X (k’+p)).
Also on the MasPar machine, a 35.205-fold

(Fig. 3) Speedups of the refaxed min-max heaps of
different sizes.

speedup 1s achieved, using 64 processors to
merge 8 million data which consist of two
relaxed heaps of different sizes.

Acknowledgement

I thank Dr. Kundo and Dr. Zheng for their
insighful comments, which have helped to
improve the results and the presentation of
the paper. [also thank Dr. Prasad who has
supplied more data to complete the paper.

dagd

{1} Aho A.V., Hopcroft J.E. and Ullman J. D.,
"“The design and analysis of computer
algorithm”, Addision-Wesely, 1974.

[2] Akl, Selim D., "The design and analysis of
parallel algorithms” Prentice-hall, 1989.

[3] Olarin S., Overstreet C.M. and Wen Z., "A
mergeable double-ended priority queue’,
Computer Journal, Vol. 34, No. 5. pp.
423-427, 1991.

{4 Deo N. and Prasad S., “parallel heap”,
Proceedings of the 1990 int’l conference on
parallel processing, pp. 169-172. Aug.

1990.

[5] Gonnet G.H. and Nunro J. 1., "Heaps on
heaps”., SIAM Journal of Computing,
Vol.15,No. 4,pp. 964-971, Dec. 1986.

[6] Deo N. and Prasad S., "Parallel heaps: An
Optimal Parallel priority queue”, Journal
of Supercomputing, 6, pp. 87-98, 1992.

{71 Strothotte Th. and Sack J.R.”An algorithm
for merging heaps”, Acta informatica 22,
pp.171-186,1985.

[8] Zhang W. and Korf R.E., "Prallel Heap
Operations on EREW-PRAM:summary of
results”, 6th IPPS, pp.315-318, 1993.

[9] Ding Y., Weiss M.A., “The relaxed
min-max heap. A mergeable double-ended
priority queue”’, Acta informatita 30. pp.
215-232, 1993.

[10} Prasad S. K., "Efficient parallel algorithms
and data structures for discrete-event
simulation”, Ph.D dissertation, Univ. of
Central Florida, Dec. 1990.

[11] —"MasPar System Overview’,
Computer Co., 1992.

MasPar

Relaxed min-max @8 ggstis HWd 2u2ld 1

L=
0f0
1z

1981 #Feuistal MapALFE T
£ (olghrh

1983y Feuigtadisgd A
A4keba E4 (]34 AN

1991 Feoigtadisrd Hx
Attt £ (o18Haal)

19841 ~1987 S AAE NS AxAREE AYdAL

19873 ~@A sAgEE HFEAF AYTLHT 37

1993d~1994'3 W= LSU a@

el : W g, /MAA, AIskl AdEd

