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A Software Release Policy Assuring Reliability for Imperfect
Debugging

Joong-Yang Park' - Young-Soon Kim''

ABSTRACT

An important issue for software developers is to determine when to stop testing the software system and release it
to users. Generally the release time is specified by the number of detected faults or the testing time needed to meet
the reliability requirement. Software reliability directly depends on the number of remaining or corrected fauits. All the
detected faults are not always corrected under imperfect debugging environment. We therefore need a new approach to
software release policy for imperfect debugging. This paper suggests a software release policy, which guarantees that
the reliability requirement has been achieved. The suggested policy is then implemented and illustrated for specific
SRGMs.
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1. Introduction

An important issue in developiné a software
system is to produce a high quality software s
ystem satisfying user requirements. There are
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many attributes of software quality. Software r
eliability, however, is generally accepted as th
e key factor in software quality since it quanti
fies software failures. Thus software reliability
has been a primary concern for both users and
software development organizations. Most soft
ware development organizations are adopting s
oftware reliability as a criterion for product re
lease. A mathematical model called a software
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reliability growth model (SRGM) is a useful
tool for grasping and assessing the degree of
software reliability. A SRGM describes softw
are fault-detection or software failure occurr
ence phenomena during the testing phase of
software development and during the operat-
ion phase.

Another important issue for software
developers is to determine when to stop
testing the software system and release it to
users. This problem is called an optimal
software release problem. In this paper, we
consider the optimal software release
problem especially for imperfect debugging
environment. The optimal software release
policies are generally dependent on the
employed SRGM and optimality criteria.
Thus SRGMs for imperfect debugging and
optimality criteria are briefly reviewed in
Sections 2 and 3. A new approach to the
optimal  software release problem is
suggested for the imperfect debugging
environment in Section 4. The new approach
allows us to declare that a software system
has achieved its reliability requirement. The
suggested approach is then implemented for

two specific SRGMs in Sections 5.

2. SRGMs for Imperfect Dubugging

Software reliability is defined as the
probability of failure~free software operation
for a specified period of time in a specified
environment. Due to design and other human
errors, few software systems are completely
free of faults. One way of reducing the number
of faults in a software system is to perform an
extensive test with the aim of detecting and
removing as many faults as possible prior to
its release. Such software testing also enables
us to assess and improve software reliability.
SRGMs are used to estimate quantitative

measures such as the initial fault content, the
mean time between software failures, and the
software reliability and to monitor the
reliability growth behavior of a software under
testing or operation based on its failure
history.

Most of earlier SRGMs assume that
detected faults are corrected perfectly
without introduction of any new faults. To
make existing SRGMs more realistic, this
assumption should be relaxed. It is therefore
necessary to develop SRGMs which assume
imperfect debugging in which the faults
detected by testing are not always
corrected/removed. Such imperfect debugging
SRGMs are expected to estimate reliability
assessment measures more accurately. SRGMs
taking account of imperfect debugging were
considered by Dalal and McIntosh [3], Goel and
Okumoto [78], Kapur and Garg {11], Kapur and
Younes [12], Xia, Zeephongsekul and Kumar [20],
Yamada, Tokuno and Osaki [23] and
Zeephongsekul, Xia and Kumar [26]. Goel and
Okumoto [78] proposed an imperfect debugging
model which is basically an extension of
De-Eutrophication model advocated by Jelinski
and Moranda [10]. Kapur and Garg [11] developed
an imperfect debugging model based on the
nonhomogeneous Poisson Process (NHPP) SRGM
introduced earlier by Goel and Okumoto [9]. Dalal
and Mclntosh [3] considered a SRGM taking
account of code changes, which implicitely
include the concept of imperfect debugging.
Xia, et al. [20] and Kapur and Younes [12] have
further extended to the situation where there
is learning in the debugging process.
Zeephongsekul, et al. [26] proposed an NHPP
SRGM in which primary-failures generate
secondary-faults under imperfect debugging.
Kapur and Younes [12] developed NHPP SRGM
that describes the error removal phenomenon
environment.

under imperfect debugging



Yamada, Tokuno and Osaki [23] considered an
imperfect debugging model based on Geometric
De-Eutrophication model.

3. Optimality Criteria for Software Release
Policies

Since Forman and Singpurwalla [4] addressed
themselves to the optimal software release pro
-blem, there have been a number of researches.
The optimal software release policy is usually
determined on the basis of two criteria described
by Okumoto and Goel [17). The two criteria are
respectively :

1. When a measure for the quality of a
software system (e.g. reliability, number
of remaining faults and mean time to
failure) reaches a given threshold,

2. When the cost (profit) is minimized

(maximized).

Sometimes a mixture of the two criteria are
employed. Specifically

3. When the cost (profit) is minimized
(maximized) subject to a restriction that
a measure for the quality of a software
system reaches a given threshold.

Optimal software release policies for each of
the three criteria are respectively referred to
as reliability-optimal, cost-optimal and cost-rel
iability-optimal software release policies. Previ

-ous studies on software release policy were

classified in Table 1 with respect to types of
criterion and debugging. Literatures for imper—
fect debugging are not many. This is because
the concept of imperfect debugging was introdu
-ced recently by Goel [6].
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{Table 1 Ciassification of optimai software reiease

policies.
Type of debugging
Perfect Imperfect
debugging debugging
-optimal (16], [18]

Cost [11, [21, [13], [14],

optimal  |[19], [21], [24], (251 (5 [ (6]
Cost

-reliability [19], [22] [20], [23], [26]

-optimal

4. A New Approach to Reliability- Optimal
Software Release Policies

Suppose that Ky is the software reliability

objective for the operation time =x;. That is,

the probability that the released software
system operates without a failure for more

than x; time should be greater than or equal
to Ry. Let R(#;T) and R(t;m,) respectively
denote the reliability functions after 7 testing
time and after detection of wm, faults.
Previous studies on the reliability-optimal
software release policy for imperfect debugging
usually determine the optimal values of T
and my; subject to the given reliability
objective. For example, Yamada, Tokuno and
Osaki [23] obtained the minimum my,, m,",

satisfying R(x,; mg)=R,. whereas Xia, et al.

[20] obtained the minimum 7. T". such that
R(xq; T)2R;. However, even though a

software system is tested until m," faults are

detected or T" testing time elapses, it is not
assured that the software system achieves the
Software reliability

reliability  objective.

directly depends on the number of corrected
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faults or the number of remaining faults and
we do not know how many faults ‘are corrected
until m,* fault detection or T testing time.
Consequently we can not be sure that the
reliability objective is accomplished. In the

circumstances it is desirable to specify how

confident we are that the software system
attains the reliability objective. We now
suggest an approach which explicitely employes
the confidence level.

Consider a software release policy under which

a software system is released when m. faults
are corrected. Let R(x;m.) be the reliability
function when m, faults are corrected. The
minimum value of m. satisfying R(xgm. =R,
is the optimal value of m,.. In the imperfect

debugging environment we can only recognize the
detected faults and do not know whether each
detected fault is corrected or not. Therefore

determination of the value of m,. does not
completely specify a software release policy.
Thus we suggest that the software system be
tested until the probability that me, faults are
corrected is greater than or equal to some
acceptable value @. Then we can say 100e¢%
confidently that reliability of the software
system is at least KRy. The probability a is
thus referred to as the confidence level.
Denote by N.(#) the number of corrected
faults up to ¢ testing time. The procedure for

obtaining an optimal policy is then described
as :

(1) Determine the minimum integer m,,
m.", satisfying the given reliability
objective, i.e.. R(xg; m)=Ry.

(2) Determine the minimum 7 such that

the probability that N.(T)=m.” is

greater than or equal to the given

confidence level «.

Section 5 applies the suggested approach to
two specific imperfect debugging SRGMs
recently advocated by Yamada, Tokuno and
Osaki [23] and Xia, Zeephongsekul and Kumar
[20]. The former belongs to the class of SRGMs
describing times between failures. the latter
belongs to the class of NHPP SRGMs.

5. Implementation for Two Imperfect Debu
-gging SRGMs

5.1 A Reliability-Optimal Release Policy for Yamada,
Tokuno and Osaki Model

Yamada, Tokuno and Osaki [23] developed a
SRGM under the following assumptions.

(1) Each fault which causes a software
failure is corrected perfectly with
probability p.

(2) The hazard rate is constant between
software failures caused by a fault in
the software system and geometrically
decreases whenever each detected fault
is corrected.

(3) The probability that two or more
software failures occur simultaneously is
negligible.

(4) No new faults are introduced during the
debugging. At most one fault is removed
when it is corrected and the correction
time is not considered.

Assumption (2) implies that when ¢ faults
have been corrected, the hazard rate for the
next software failure occurrence is given by

z;(t)=Dk, i=0,1,2,-, D>0, 0<A<L,



where D and % are the initial hazard rate
and decreasing ratio, respectively. Distrib-
ution function for the next software failure

occurrence time is then given Dby
Fi(t)=1—exp(— DE'P). Several reliability
measures were derived under these assum

-ptions. Define the following random vari-
ables.

S, ¢ mth successful correction time of
detected faults.
X, : time interval between (/—1)st and /

th software failures.

Let G,(¢t) and @,(¢t) denote the
distribution functions of S, and X,

respectively. It was shown that

Ga(8) = 24 Ayl 1 —exp(— pDKD)

and
0,(H)= g (l"il)p"(l—p)"“"{l —exp(— Dk't)}

where Appi1=1 and Ak.i,n___kn(n~1)/2*i

/ ] (K — k). Denoting by P,(t) the

i=0s%i

probability that N.(f)=mn. it is -easily
verified that P,(t) = G,(t)—G,+1(8).

Yamada, Tokuno and Osaki [23] then
suggested a software release policy which
releases a software system when m, faults
have been detected. The optimum value of
my, mg  is the minimum integer gy
satisfying R{xpmg)=R,. Here R(xypmy)=
1—@,,+1(xq). Since this release policy

produces a random, not deterministic., release
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time, it was suggested that a software system
e
be released at Ty= EE(XI) where

E(X;)= (p/k+(1—p)""'/D. Table 2 of
Yamada, Tokuno and Osaki [23] shows the
optimal values of #, and corresponding T,"
for D=0.2, £#=0.9, x=2.5 and R;=0.95.
For the sake of comparison the optimal values
are reproduced in Table 2. Note that
my;" =22 for p=1.0 and m. =my;" when
p»=1.0. This implies that at least 22 faults

should be corrected in order to attain the
given reliability objective. We computed

Pr(N(T,;*)=m_."), the probability that at
least wm. =22 faults are corrected during

T,;* testing time. The probabilities does not
seem to be large enough, so the release policy
of Yamada, Tokuno and Osaki does not assure
the software reliability sufficiently.

(Table 2> Values of m,;” and T,° for D=0.2,
k=0.9, xp=2.5 and Ry=0.95.

? md‘ Td‘ Pr(Nc(Td')ch‘)
1.0 22 411.96 0.54
0.9 25 491.74 0.65
0.8 28 5564.22 0.65
0.7 32 642.11 0.67
0.6 37 741.82 0.67
05 45 935.40 0.72
0.4 56  1171.99 0.73
0.3 75 1604.38 0.77
0.2 113 2471.52 0.80
0.1 226  5017.14 0.82

Let us now derive the optimal software rele
ase policy suggested in Section 4. First we obt

ain the minimum value of m, satisfying given
reliability objective. If m,. faults are correcte
d. the hazard rate for the next software failur

e is given by 2, .(¢). Thus the corresponding
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reliability function is
R(t;m,.) = exp(—Dk™t). The minimum inte
-ger satisfying R(xg;m.)=R, is then the opti

mum  number of  corrected faults. If

R(x4;0)< Ry. monotonicity of R(xg;m,.) ensure
s that there exists a unique m." such that
R(xy;m. )2Ry and R(xg;m.” —1) <R,. Othe

rwise, m. =0. That is,

0, if R(xz0)=R,

m, =

[ In(—InRy) —InD— Inxg

n% ] + 1, otherwise

where [ x] denote the largest integer less (fhdh
or equal to x. The optimum software release
time 7% is then the minimum value of T
satisfying Pr(N.(T)zm,)=a. Since
Pr(N(T)zm;) =G, -(T) is a monotone

increasing function of 7T, T." is the root of
Gu(T)=a. For example, assume that
%=2.5, Ry=0.95, D=0.2 and £=0.9 as
in Table 2. The optimal value of m, is

obtained as 22 from equation (5.1). The

(Table 3) Values of T.® for D=0.2, £=0.9,
x0=25 and R0=0.95

T.*
b4 a=0.90 a=0.95
1.0 550.05 599.41
0.9 611.17 666.01
0.8 687.57 749.26
0.7 785.79 856.30
0.6 916.76 999.02
0.5 1100.11 1198.82
0.4 1375.14 1498.82
0.3 1833.51 1998.04
0.2 2750.27 2997.06
0.1 5500.54 5994.12

corresponding values of 7. are numerically
computed and presented in Table 3 for
2=0.90 and 0.95. As expected, more testing
time is required to assure the software
reliability.

5.2 A Reliability-Optimal Policy for Xia, Zeephongsekul
and Kumar Mode!

Xia, Zeephongsekul and Kufnar [20]
developed an NHPP SRGM for imperfect
debugging, in which the debugging process
improves with experiences, that is, there is a
learning factor involved. A cost-reliability-
optimal release policy was then obtained. The
model is based on the following assumptions.

(1) Software system is subjected to failures
caused by faults remaining in the
software system.

(2) Software failure rate is equally affected
by faults remaining in the software
system.

(3) The occurrences of software failure
follow an NHPP.

(4) The software failure rate at any time is
proportional to the number of faults
remaining in the software system at that
time.

(5) Failures are independent and each
failure is caused by one fault.

(6) On the occurrence of (i+1)st failure,
the following may occur :

- fault content is reduced by one with
probability p;;

- fault content is unchanged with
probability (1—p;).

(7) The probability of fixing a failure is a
linearly increasing function of the
number of repaires carried out in the

past, that is, p;=pll+(—1)I1,



where pq is the probability of correcting

the 1st fault and [/ is the learning
factor.

Let m.(t) and mg(¢) denote the expected
values of N.(¢#) and N,(t), where N.(¢)
and N,(t) are the numbers of corrected faults

and detected faults up to time £. It was also
shown that

m.(t) = %mdz(t)pol‘f‘ﬁomd(t)

and

2a[ 1 — exp(— bpyrd)]
pol (14 #) —(1— ») exp(— bpyr?)]

my(H=

where a is the total number of faults in the
software system, & 1is the proportionality
constant (failure rate per fault) and

r=\1+2al/py.

We now obtain the optimal release time for
this SRGM. Assumptions (2) and (4) implies
that the reliability function R(#me.) is given

by expl—b&a—mHt]. If R(xy;0)=R;, then
m. ={. Otherwise, m,” is the minimum
integer such that R(xpym.)=R,. Therefore the

optimal value of m. is obtained as

0, if R(xp0)=R,

m. = 6.1)

L InR,
[a bx

] +1, otherwise,

The corresponding optimal release time 7T

is  thus the minimum T  satisfying
Pr(N(T)=m, ")=a for some acceptable a.

Since N.(T) is a Poisson distributed random
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variable with mean m.(T). we can obtain T

numerically. We illustrate by an example,
which was considered in Example 1 of Xia, et
al. [20].

Example Supposes that  a=26.63.

b=0.0072, p,=0.6. [=0.026, xy=2.0 and
Ry;={(.8. Suppose further that @=0.9.
Using these parameters, we obtain m.” =12

from equation (6.1) and 7T = 170.498 by a
numerical method. The minimum value of T
such that R(xy T)=R, was however obtained
as 101.83 in Xia, et al. [20].

6. Discussion

It is important to determine an appropriate
release time for a software system under
development. In this paper we suggested a
new approach to reliability-optimal software
release policies for the imperfect debugging
environment. The approach first determines
the number of faults to be corrected and then
the testing time required to correct the
determined number of faults with some desirable
probability. So we are provided with software
release policies assuring that a software
system attains the given reliability objective.
The suggested approach is so general that it can
be also applied to the cost-reliability-optimal
software release policies.
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