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Numerical Simulation of 2-D Wing-In-Ground Effect
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1. Introduction

It is well-known that the lift force of a wing is
increased when it approaches the ground or water
surface, but the practical research and development of
Wing-In-Ground effect vehicles (WIGs) which take
the advantage of this knowledge were not made until
1960’s. Many pioneering works on the wing were

done in the former USSR for military purposes. In
recent years, as a result of the increasing demand for
high-speed sea transportation, the interest in the WIG
vehicles is rising in many countries because they are
especially competent for midium-range passenger and
cargo transport.

In such a situation researches on the WIG are
stimulated correspondingly. In fact, there remain some
critical problems such as the stability, which requires
careful attention in designing WIGs. For this purpose,

*1 Shanghai Jiao Tong University, China; presently visiting professor at KRISO

*2 Member, Korea Research Institute of Ships and Ocean Engineering (KRISO)
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detailed flow phenomena and aerodynamic
performances of WIGs need to be investigated. It is
then natural that CFD provides a useful tool for them
along with experimental research.

Recently Hirata[1,2] and Hirata et al.[3] presented
their researches on the WIG by using a finite-volume
method. In the research of Kim et al.[4], the problem
of longitudinal stability was investigated numerically
for 2-D(two-dimensional) WIG with a finite-
difference method.

In the present research, we use RANS Equation.
That is a part of our research aimed at viscous flow
simulation for WIGs.

The pseudo-compressibility formulation proposed
by Chorin[5] is adopted in the present method. The
approximate factorization technique is used to solve
the Reynolds Averaged Navier-Stokes (RANS)
equations. The convective terms in momentum
equations are approximated with third-order upwind
differencings. Fourth-order central differencings are
used for the other spatial derivatives, and fourth-order
numerical dissipation terms for pressure are added
implicitly into the continuity equation to damp out the
high-frequency pressure oscillations[6].

The Baldwin-Lomax turbulence model[7] is used
to simulate high-Reynolds-number flows.

NACAO0012 section was calculated first by using
the present method. The results are compared with
experimental data, and the accuracy of the present
numerical scheme for 2-D unbounded flow is verified.

Numerical investigations into the ground effect are
made for two NACA four-digit sections, NACA6409
and another one of 4.6% thickness and 0.358% camber
ratio. The present scheme is found to be quite stable,
and its convergence rate is very fast especially under
strong ground effect.

2. Numerical Formulation

2.1 Governing equations

The 2-D RANS equations with pseudo-
compressibility are written in vector form as follows:

q,+Fq,+Gq,=Cp(q +94,) O

where

F. .+ F

< v

G +G

< v

)
11
<
——
Q
ol

u 0 1 v 0 0]
EzOuO}Gc:Ovl,
g 00 0 8 0
-2y, -v, 0 —vyOO_
=0 - OG- -2 0}
0 00 [0 0 o
100
C"z(Fl"“")o 1 0|
‘ 000

u and v denote velocity components in x and y
directions, respectively. The subscripts x, y and ¢
denote partial derivatives. p is the pressure, R, is the
Reynolds number defined as R,=UgL/v. All the
variables are nondimensionalized by the characteristic
length of body, L, and the inflow velocity, Up , except
the pressure, p, which is nondimensionalized by onz,
where p is the density of fluid. vand v are kinematics
viscosity and local eddy viscosity respectively. #is a
positive constant for pseudo-compressibility.

2.2 Solution in boundary-fitted coordinates

Numerical solution of the governing equations is
carried out in boundary-fitted coordinates to facilitate
the implementation of body boundary conditions. The
governing equations in physical coordinates (x,y) are
transformed in terms of the boundary-fitted
coordinates (&,7), in which the computational domain
is a rectangular area and the grids are of unit spacing
in both coordinate directions.

The transformed governing equations read as
follows:

g, +Aq, +Bg, =C,V’q ¥))
where
A=aF +dG ,
B=bF +eG @
Vig=aq, +13qw +3q¢q +8, +f1q” @
J=1/8= -——1———— (5)
XeVy = VeXy
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a=y,/S
b=-y,/S§

6)
d= —x,,/S
e= xg./S
S =(ax, +bxy, +dy +ey,,)S o
S, =(ax§” +b)§m +dy5,,+ey,,,,)S
a=a*+d* ]
b=b'+é
d= 2(ab + de) ? 8)
g=aa; +ba, +dd, +ed,
h= ab§ +bb,, +de§ +ee, J

a, =(y,, —aS,)/8
a,=(y,,—as,)/§
b, =~(y, —bS,)/S
b, =—(ys, —bS,',)/S> 9)
d; =—(xz, —dS;)/§
d,=—(x,, —dSs,)S
e; =(xz, —eS;)/S
e, =(x;,—eS,)/S

n

n

Equation (2) is discretized in time by using the
Euler implicit scheme:

i‘AqT"_‘_(Aq;)ml +(Bq")nol = C;vzqml (10)

where superscript n denotes the n-th time step and

Aqn =qn+l _qn (Il)

As the convective terms in (10) are nonlinear, they
need to be linearized. The linearization is performed
only for the inviscid part, while the viscous part is
evaluated explicitly. Define

U=au+dv
12)
V =bu+ev
U 0 a V0 b
A =0 U d,B=|0 Vv e| 3
aB dp 0 bB ef O

Note that only the diagonal components in (13) are
time-dependent and need to be linearized. Neglecting
the second-order terms of Ag and/or its derivatives, we
have

(Aqg)m-l +(Bq”)n+l
=(Aq,)" +(Bg,)" +(4Aq,)" +(BAg,)" (19
+(AAg)" +(BAg)"

where
au, dug 0 bu, eu 0
A=|av, dv, 0|, B=|bv, ev, 0f.
0 0 0 0 0 0

Inserting the linearized convective terms into
equation (10) and decomposing its right hand side, we
have

- 8 YA
T+ AMA+A—-Cp(g—+a—
4
+1,0° Zr+aqs+8l-c,
% on
(15)
YL .,
(h;ﬂ— + b?i—r]_i‘) + Ipa)” ﬁ]”}Aq
= AH(C,V’q) ~ At(Aq, + Bq,)"
+ AIC,dAgl;!
Py 4
+1,(0 el +0" —7)g"

o

where fourth-order numerical dissipation terms for
pressure are added implicitly. »° and @" are positive

constants. [, isa matrix

000
I,={0 0 Of.
0 01
Equation (15) is solved by the approximate

factorization method. The solution procedure consists
of two sweeps:

E-sweep:
- 7 ~d .
I+AA+A—- —+a—
& 54 *
+1,0° ?]"}Aq (16)
=RHS of eq(15)

AL F A
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n-sweep:

(reand+ 82,2 vh 522)
on on

5 17
+1,0"—T1318q9" = A’
on

The present method employs third-order upwind
differencings to discretize the convective terms for
velocity, and fourth-order central differencings with
numerical dissipation for pressure. This produces a set
of block pentadiagonal equations for each sweep:

E-sweep:
KiAQ;-z + LiAq;—l +MAg; +NiAq;+1 (18)
+0,Aq;,, = RHS of eq.(15)

n-sweep:
K_,AAq}’_2 + Lqu;.’_, +MAq} + N Aq],, (19)

+ Oquj+2 = qu
where,

’ K = Z+C_‘+%(Ac +l4.)

L =-84-F+ 5 (24~ |4])

M, =1+At(4 +%&CR)+6Atw‘ 1, +%}Bc|
N, =8Z—§+%(2Ac—|,4c|)

- = A
—_A+C+8 4
, +C+12( L +4])

[— At .
=—(A4,-gC
IZ(Av £Cy)
- 4 c
< B=At(§aCR+4w 1,)

— 1. :
€ = Milg5aCr +01,)

K, =Z+E+1A2’-(Bc+|Bc|)

- = A
L, —8A-B+?(—ZBC—|B¢|)

A

s 54 At
M; = 1+At(B+EbCR)+6Ata)”IP+7|Bc|

- = A
N;=84- +?(23,—BE|)
0i=—3+5+%(—BC+BC)

(- At -
A==—(B -hC
12( »~hCa)

{B= At(f;—éck +40"1 )

C= At(li2 bCy+a0'1,)

The subscripts i and j denote the numbering in & and
n-direction respectively. The coefficients, K; ~ O, Ky’
~ Oj’, are 3x3 matrices.

Egs. (18) and (19) are solved with a block penta-
diagonal matrix solver. Then the velocity and pressure
are updated and the computation proceeds to the next
time step until a converged solution is reached.

The Baldwin-Lomax turbulence model{7] is used
for turbulent flow simulation. The eddy viscosity is
evaluated explicitly.

2.3 Initial and boundary conditions

The above finite difference equations are solved
under appropriate initial and boundary conditions. For
the present problem of Wing-In-Ground effect, H-type
grids are used, and the computational domain is shown
in Fig.l. The initial and boundary conditions are
specified as follows:

1) body surface

velocity: =0, v=0 (no-slip condition)

pressure: zero-gradient along 7—direction
2) inflow (upstream) boundary

velocity: u=Up, v=0

pressure: p=0
3) outflow (downstream) boundary

velocity: zero-gradient in &-direction

pressure: zero-gradient in &~direction

4) upper boundary

velocity: zero-gradient in 7-direction

pressure: zero-gradient in 7-direction
5) lower boundary (ground)

velocity: u=Up, v=0

pressure: zero-gradient in 77-direction
6) initial condition (inside domain)

velocity: u=Ug, v=0

pressure: p=0
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lower surface, thus reduces the frictional resistance.
Meanwhile, in the present case, a suction peak at the
leading edge appears and gets larger as h/c decreases,
as shown in Fig.9, which would cause the form drag to
decrease. The center of pressure, Xcp, moves
backwards as the wing approaches the ground

Fig.10 through Fig.13 are some examples of the
calculated pressure and velocity field. It is observed
that the increase in lift is mainly attributable to the
higher pressure beneath the wing as a result of the
blockage effect of the ground, since the pressure on
suction side keeps almost unchanged.

3.3 NACA thin wing in ground effect

The thin wing section is of NACA 4-digit type,
with 4.6% thickness ratio and 0.358% camber ratio
(max. camber position at 0.2c). The computations
were conducted at Rg=106 at 3.5° angle of attack.

Computation of the thin wing section is a little
difficult as compared with the preceding case, mainly
because of the sharp leading edge which produces a
very high suction peak that makes the flow prone to
separation.

The computation parameters are listed in Table 4.
One can see that the maximum time step size is much
smaller than that used for NACA6409, thus requiring
much more steps to converge.

Table 4 Computation parameters for thin wing
Hfe | NIXNJ | Amin | Atmin | Atmax
0.2 }128x97(0.0001 }0.00025{ 0.001
0.1 128 x97 { 0.0001 |0.00025| 0.001
0.05 |128x97{ 0.0001 0.00025] 0.001

The history of convergence for the thin wing is
shown in Fig.14, which is quite similar to that shown
in Fig.7 except for h/c=0.05, where high-frequency
oscillations in Cy and Cpy occur due to flow separation
from the leading edge. It is to be verified by
experiment whether the separation does occur or not.
It should be noted that, if the oscillations do occur
physically, time-accurate solutions would become
necessary, and the present formulation employing the
concept of pseudo-compressibility is only for steady
solution. ’

Variations of lift, drag, and the pressure center are
illustrated in Fig.15, and surface pressure distributions
are shown in Fig.16.

Fig.17 and Fig.18 show calculated velocity and
pressure field at A/c=0.1.

4. Concluding Remarks

A numerical method is presented in this paper for
simulating the viscous flow around a 2-D Wing-In-
Ground effect by solving the RANS equations. The
concept of pseudo-compressibility is employed and an
implicit finite difference method is used to solve the
partial differential equations.

Numerical examples show that the present method
is quite efficient and capable of simulating the flow
phenomenon associated with Wing-In-Ground effect.
An interesting feature of the present code is that it
provides faster convergence at lower height ratio.

As our future work, the present method will be
extended to 3-D, so that simulations can be made for
more practical purposes.
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3. Numerical Examples

3.1 NACA(012 in unbounded flow (h/c=wx)

To test the performance of the computer code
developed based on the present numerical method,
computations were carried out for NACAO012 at
R.=3x106 and 6° angle of attack, by using C- and H-
grid respectively. The C-grid was generated by an
elliptical equation method, while the H-grid by an
algebraic method.

The computation parameters are listed in Table 1.
NI and NJ are grid numbers in & and #z-direction
respectively. Ayjp is the minimum grid spacing, Aty
and Aty are minimum and maximum time step size,
respectively.

Fig.2 and Fig.3 show the C- and H-type grids used
for NACAO0012, respectively.

Table 1. Computation parameters for NACA0012

NIXNIJ Apmin Atpin | Atmax
C-grid{ 130x55 | 0.00005 | 0.001 0.01
H-grid| 120 x 120 0.00005 [0.00025| 0.0025

Table 2. Comparison of Cz and Cp

CL Cp
Exp.[8) 0.64 0.0084
Cal. (C-grid) 0.636 0.0154
Cal. (H-grid) 0.682 0.0115

Fig.4 shows the convergence history of lift and
drag coefficients, C; and Cp (nondimensionalized
by 0.5pUg2).

In Table 2, a comparison of calculated Cy, and Cp
with experimental data shows that the C, given by C-
grid agrees well with experiment, but that given by H-
grid is overestimated. As for Cp, both grids yield
higher values than experiment. It can be said that the
present results show generally good agreement with
experimental data.

In Fig.5 are shown the experimental and calculated
surface pressure distributions, where the pressure
coefficient, Cp, is nondimensionalized by 0.5pUg2.
The experimental points were reproduced from [1]. It
is clear that, by using H-grid, the pressure difference
between back and face sides are larger near the leading
edge, which results in a larger lift. A possible reason

for the overestimation is, when using H-grid, the
aspect ratio of grids near the leading edge have to be
kept quite small in order to avoid pressure oscillation
there. This makes the grids too much clustered
towards &=const. line at the leading edge. Besides, in
the case of H-grid kinks along z=const. lines are
inevitable in the vicinity of the leading edge, which
will also affect the accuracy.

Computations were also conducted for NACA6409
and another NACA 4-digit section of 4.6% thickness.
It was found that, similar to the case of NACA0012,
the calculated lift was slightly higher with H-grid than
with C-grid.

3.2 NACA6409 in ground effect

In this section, numerical results are presented for
NACA6409 in ground effect at R,=2.37x105, and 4°
angle of attack. The computation parameters are listed
in Table 3. The definition of height ratio, h/c, is shown
in Fig.1, where ¢ is section chord length. The H-grid at
h/c=0.2 is shown in Fig.6 as an example.

Fig.7 shows the convergence history of Cz and Cp.
As the computation begins from a state of impulsive
start, the initial time step size, Aty,;p,, has to be quite
small. After about 2000 steps, the time step size can
usually be increased by one order. Typically 4000
steps are needed to obtain a converged solution. For
all the height ratios calculated, the same minimum.
and maximum time step sizes can be used and it
converges faster as 4/c decreases.

Table 3. Computation parameters for NACA6409

e | NIXNJ | Amin | Mmin | Mpax
08 |111x110| 0.0001 |0.0005 | 0.005
04 |111x104 | 0.0001 | 0.0005| 0.005
02 | 111x94 | 0.0001 | 0.0005] 0.005 |
0.1 | 111x94 | 0.0001 [0.0005 0.005
0.05 | 111x94 | 0.0001 ] 0.0005] 0.005
0.025 | 111x94 ] 0.0001 |0.0005] 0.003
0.01 | 111x88 | 0.0001 |0.0005| 0.005

In Fig.8 are shown the computed variations of Cy,
Cp, and Xcp (the position of pressure center from the
leading edge, in fractions of chord). The increase in
lift is clearly observed with decreasing h/c. As for Cp,
a slight decrease is found with decreasing #/c. This
seems rational because the blockage effect of the
ground makes smaller velocity gradient beneath the
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