Econ. Environ. Geol.
Vol. 31, No. 3, p. 171-183, 1998.

Hydrothermal Alteration and Mineralization in the Granodioritic
Stock of the Barton Peninsula, King George Island, Antarctica

Jeong Hwang* and Jong Ik Lee**

ABSTRACT : Early Tertiary volcanics, volcanoclastics and granodiorite occur in the Barton Peninsula, King George Is-
land, Antarctica. In the granodioritic stock and volcanic rocks, propylitic alteration characterized by actinolite, epidote,
chlorite and calcite is widespread, and disseminations and veinlets of sulfide minerals such as pyrite, chalcopyrite and
bornite are ubiquitious. The study on the hydrothermal alteration near granodioritic stock can be summarized as follows;
(1) granodiorite intrusion is a small, high level stock associated with calc-alkaline volcanism, and have high copper con-
tent, (2) high temperature type of propylitic alteration and common occurrence of copper sulfides in and around grano-
diorite intrusion, (3) low &S values of pyrites by oxidational conditions of sulfide deposition, (4) low 80 values of
quartz and feldspar in the granodiorite, and isotopic non-equilibrium by hydrothermal alteration. It suggest that hy-
rothermal alteration and mineralization near granodioritc stock should be genetically related to granodiorite intrusion in

the Barton Peninsula.

INTRODUCTION

The Antarctic Peninsula is considered to be a
particularly favorable geologic environment for forma-
tion of mineral deposits because its geologic and
tectonic settings are similar to those of the Andean belt
of South America, one of the world's major mi-
neralized belt. Thus, the Antarctic Peninsula belongs to
the Andean metallogenic province which is the
southward extension of the province in western South
America (Ericksen, 1976).

The South Shetland Islands is mainly calc-alkaline
island arc, separated from the Antarctic Peninsula by
the young marginal basin of the Bransfield Strait. In
this region, widespread hydrothermal alteration and
mineralization are associated mainly with Tertiary
volcanic and plutonic rocks. Many workers (e.g.,
Wright, Williams, 1974; Cox et al., 1980) have
pointed out that the ages and characteristics of
plutons in the South Shetland Islands are similar to
those in the Chilean Andes of South America in
which porphyry-type and related mineralizations are
dominant.

Hydrothermally altered rocks and related quartz
veins are scattered on King George Island of the
South Shetland Islands. On the hydrothermally alte-
red rocks of the island, Littlefair (1978) and Hawkes
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(1982) considered that it is low temperature hot
spring type alteration that may represent the surface
expression of porphyry-type mineralization at deeper
depth on the island. According to Cox (1981), the
alteration and mineralization may not be porphyry-
type in character but due to the devolatilization of
diorite and granodiorite-quartz diorite magmas as
they crystallized. Willan (1987) considered that the
mineralization could have been volcanogenic or high
level epithermal in origin related to gabbroic or
granodioritic intrusions. These previously studies
suggest that the mineralization in King George Island
is likely to be closely associated with granitic magma-
tism and could be a potential region as the site of
porphyry-type and related metal mineralization.

The mineralogy and geochemistry of quartz veins
hosted in altered volcanic rocks of the Barton
Peninsula, King George Island, were studied by
Littlefair (1978), Park (1991) and So er al. (1995).
However there has been no detailed work on
hydrothermally altered rocks in and around the gra-
nitic pluton. In this study, we first describe hy-
drothermal alteration and mineralization in and
around granitic pluton, and then discuss the genesis
of metal mineralization on the basis of mineralogy,
geochemistry and stable isotope of hydrothermally
altered rocks.

GENERAL GEOLOGY

King George Island is situated in the middle of the
South Shetland Islands. The stratigraphic sequence of
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Fig. 1. Geological map of the Barton Peninsula. Location and K-Ar biotite ages of granodiorite determined by the authors
are shown. Sampling sites are listed as follows; gl-g6 (granodiorite), v1-v6 (volcanic rock).

the Barton Peninsula includes upper Cretaceous to
lower Miocene, mostly calc-alkaline and predominan-
tly subaerial volcanic and volcanoclastic rocks. They
were intruded by medium-sized granitic rocks (Fig.
1). The southern Barton Peninsula is composed of
volcanoclastic succession of mainly andesitic com-
position. Along the southern coast, poorly-sorted
agglomerate, subordinate tuffaceous sandstone and
purple or pale green sandstone/siltstone occupy the
lower unit of volcanoclastic succession. Lots of plant
fossils indicating late Paleocene to Eocene and
tropical to subtropical environment were found in the
purple or pale green sandstonesiltstone (Chun et al,

1994). The upper unit of southern peninsula consists
of andesitic tuff and lava. The northern peninsula,
which also belongs to the upper unit and is separated
from southern peninsula by NW-stretching fault,
comprises andesitic tuff, basaltic andesite flow and
granitic rocks. The granitic rocks, which intruded
into basaltic andesite on the north and bounded by
andesitic tuff and lava on the south, is composed of
gabbro, diorite, granodiorite and aplitic dikes. Two K-
Ar biotite ages of granodiorite determined by Lee et
al. (1996) are 41.9+0.9 Ma and 41.2+0.9 Ma, re-
spectively. In conjunction with previous results

(Pankhurst, Smellie, 1983; Jin et al, 1991, Park,



Hydrothermal Alteration and Mineralization in the Granodioritic Stock of the Barton Peninsula, King George Island, Antarctica 173

1989), these ages suggest that the granitic rocks have
intruded in Eocene time.

PETROLOGY OF GRANITIC ROCKS

Triangular plot of modal quartz, alkali feldspar
and plagioclase illustrates that the granitic rocks
have wide compositional range from gabbro to
granite, but is mainly composed of granodiorite
(Fig. 2). Medium-grained gabbro in the Weaver Pe-
ninsula is characterized by cumulate texture. Fine-
grained diorite along the southern coast of Marian
Cove consists of plagioclase, quartz, pyroxene,
hornblende, biotite and Fe-Ti oxides with minor
apatite. Chlorite and epidote are the common se-
condary minerals. Medium-grained granodiorite is
mainly composed of plagioclase, quartz, alkali feld-

i
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Fig. 2. Modal classification of the granitic rocks plotted
on the Streckeisen's (1976) Q-A-P diagram. Abbreviation;
quariz (Qz), plagioclase (Pl), alkali feldspar (Af), diorite
(Di), quartz diorite (Qd), quartz monzodiorite (Qmd), to-
nalite (Tol), granodiorite (Gd), granite (Gr)
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Fig. 3. AFM diagram of the granitic rock shows that it

were formed by differentiation of calc-alkaline series (Petro
et al., 1979). Symboles are the same as in Fig. 2.

spar, hornblende, biotite and Fe-Ti oxides. Minor
phases are pyroxene, zircon and apatite. Common
altered minerals are chlorite, epidote and calcite.
Hornblende and biotite variable in modes mostly
coexist with magnetite. Small amounts of clino-
pyroxene are commonly alter to biotite and mag-
netite. Frequently observed miarolitic cavities and
microgaphic intergrowth of alkali feldspar and
quartz support that the magma was saturated with
water near its solidus and decompressed to a cer-
tain degree. Equigranular aplitic dikes, a few cen-
timeter in width, has intruded into diorite and
granodiorite. It is composed of alkali feldspar,
quartz, plagioclase with subordinate hornblende,
biotite, zircon and Fe-Ti oxides. Abundant mia-
rolitic cavities are filled with secondary quartz,
alkali feldspar and epidote. Micrographic textures
are also observed in some samples.
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Fig. 4. Tectonic discrimination diagram for VAG (vol-
canic arc granite), syn-CORG (syncollision granite), WPG
(within plate granite) and ORG (ocean ridge granite) of
Pearce et al. (1984).
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Fig. 5. The copper contents of the granitic rocks. They
are higher than average granitic rocks (Taylor, 1965). Cir-
cle is average content of the granitic rock in the Barton
Peninsula. Data from Hwang ef al. (1995). Abbreviation;
diorite (Di), granodiorite (Gd), aplite (Ap).

The whole-rock analyses of major and trace
elements (Lee et al., 1996) suggest that the subunits
of the pluton were formed by differentiation of calc-
alkaline series (Fig. 3). Low concentrations of Nb
and Y (Fig. 4a) and relatively low concentration of
Rb compared to typical syn-collision granites in all
subunits (Fig. 4b) demonstrate that the pluton was
formed under volcanic arc environment (Pearce et al.,
1984). Copper concentrations of all subunits are
anomalously high although other metal elements
such as zinc, lead and molybdenum are also present.
The average copper concentrations of four diorites,
seventeen granodiorites and two aplites are 276 ppm,
174 ppm and 152 ppm, respectively (Fig. 5). The
average abundances of normal diorite and granite are
40ppm and 10ppm, respectively (Taylor, 1965).
These copper contents of the studied pluton are
higher than the average granitic rocks.

In this study, as gabbro occur only in the Weaver
Peninsula and majority of the granitic rocks in the
Barton Peninsula is granodiorite, we describe hydro-
thermal alteration in and around the granodiorite stock
to discuss the geochemical condition and genesis of
hydrothermal alteration and mineralization.

HYDROTHERMAL ALTERATION

Hydrothermally altered rocks, which are wides-
pread in the Barton Peninsula, have been studied by
many workers (Hawkes, 1961; Barton, 1964; Lit-
tlefair, 1978;, Davies, 1982; Park, 1991; Kim et al.,

1995). In the previous works, many alteration
minerals and four hydrothermal alteration types are
recognized; propylitic, phyllic, argillic, and advanced
argillic. Propylitic alteration characterized by epidote+
chlorite + calcite assemblage is most widespread in
granitic and volcanic rocks. The phyllic and argillic
alterations which are characterized by sericite, illite
and kaolinite with minor propylitic alteration assem-
blage, are developed in the northeastern and sou-
thwestern parts of the peninsula. The advanced
argillic alteration containing microcrystalline quartz,
kaolinite, alunite and native sulfur are developed in
high level near the Backdu-bong. Propylitic alteration
is widely distributed in the Barton Peninsula, but the
other alterations are confined to the vicinity of fault-
related fracture zones in propylitized volcanic rocks.
Park (1991) and So et al. (1995) reported that the
phyllic and argillic alterations were superimposed on
the early propylitic alteration zone along the fault
zone. However, we could not find the field evi-
dences of phyllic alteration in the fault zone on the
southeastern part of the Barton Peninsula, though
minor sericitization was found near the contact bet-
ween granodiorite and volcanic rocks.

In the granodiorite, pyroxene and hornblende are
replaced by actinolite+chlorite+calcite assemblage.
Biotite is replaced by chlorite and actinolite with or
without epidote (Fig. 6a). Plagioclase is replaced by
epidote + calcite assemblage. The common alte- red
mineral assemblage is chlorite+actinolite+epi- dote +
calcite, and the most common altered mineral is
chlorite (Fig. 6b). The aggregates of fine-grained
magnetite commonly occur in chlorite. The che-
mical compositions of amphibole and chlorite de-
termined by EPMA are listed in Table 1 and Table
2, respectively. The composition of amphiboles is
actinolite, while some amphiboles are magnesio-
hornblende (Fig. 7). The composition of chlorites is
pychnochlorite (Fig. 8). Fine-grained secondary bio-
tites associated with magnetite and epidote are obser-
ved along grain boundaries and twin planes of
plagioclase.

The volcanic rocks suffered from propylitic alte-
ration are reddish or greenish in color because of the
presence of epidote, chlorite and hematite. Mafic
minerals altered to chlorite and actinolite. Plagioclase
phenocrysts are selectively replaced by calcite and
cpidote with or without chlorite. Chlorite, epidote
and opaque minerals occur throughout the tuffaceous
matrix. The amygdules of volcanic rocks are filled
with aggregates of chlorite, chlorite+epidote+quartz
and chlorite+epidote+calcite (Fig. 6¢). The actinolite
veinlets associated with chlorite and opaque minerals
are ubiquitous in volcanic rocks (Fig. 6d).
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dote and actinolite. Chal-
copyrite is associated with alteration minerals; crossed nicol, in granodiorite. (b) The mineral assemblage of chlorite+
actinolite+calcite is common. Fine-grained magnetites commonly occur in chlorite; crossed nicol, in granodiorites. (c) The
amygdules are filled with chlorite, epidote, calcite and quartz; crossed nicol, in volcanic rocks. (d) Acicular actinolites with
chlorite are closely associated with chalcopyrite and pyrite; crossed nicol, in volcanic rocks. (¢) Sulfide veinlet is consist of
pyrite, chalcopyrite and magnetite; reflected light, in volcanic rocks. (f) Bornite is disseminated in propylitized granodiorite;
reflected light. (g) Bornite and chalcopyrite are associated with epidote in propylitized granodiorite; reflected light. (h) Py-
rite and quartz are associated with sericite and chlorite. Highly sericitization develops in the contact between granodiorite
and volcanic rocks; crossed nicol, in granodiorite. Abbreviation; pyrite (py), chalcopyrite (cp), bornite (bn), magnetite (mt),
chlorite (chl), epidote (ep), actinolite (act), sericite (ser), calcite (cal), biotite (bt), quartz (qz), plagioclase (pl).
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Fig. 7. Mg/(Mg+Fe) atomic ratio versus number of Si atoms in the unit cell formula of amphiboles based on Leake (1978).

full circle; granodiorite rocks, open circle; volcanic rocks.

total Fe/(total Fe +Mg) crystals, which have minute inclusions of plagioclase,

00 02 04 06 08 10 are closely associated with epidote and chlorite. Chal-
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0 ‘ always occur as major alteration minerals in highly
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wotal Fe Cathelineau and Nieva (1985) found that the rela-

Fig. 8. Composition of the analyzed chlorite plotted on
the Hey's (1954) diagram. open circle; granodiorite rocks,
full circle; volcanic rocks.

METAL MINERALIZATION

The disseminations and veinlets of ore minerals
are common in propylitic alteration zone. Ore mine-
rals include pyrite, chalcopyrite, bornite, magnetite,
hematite and rutile. Pyrite, chlacopyrite, and magne-
tite are common ore minerals, and the majority of
these minerals is found within veinlets in volcanic
rocks (Fig. 6e). The dissemination of pyrite, chal-
copyrite and minor bornite is common in propy-
litized granitic rocks which are characterized by
chlorite+actinolite +calcite assemblage (Fig. 6f, g).
Pyrite and quartz coexist with chlorite in highly
sericitized rocks around the contact between grano-
diorite intrusion and volcanic rocks (Fig. 6h). In
propylitized volcanic rocks, disseminations and ve-
inlets of ore minerals are ubiquitous. Euhedral pyrite

tionship, X, =4.71x107* T-826x 1077, is valid for
chlorite forming in the temperature range 130 to 310°C,
and it would be extrapolated to lower and higher
temperature. The calculated formation temperature of
chlorite in granodiorite rocks is 186~287°C, and that in
volcanic rocks is 233~265°C (Table 2). So et al. (1995)
have reported that primary fluid inclusions from void-
filling calcite in altered andesite homogenize at 223~
269°C. The consistence between chlorite and fluid
inclusion geothermometer data in altered volcanic
rocks suggests that the main reaction producing pro-
pylitic alteration occurred at 250°C. Thus we ass-
umed that the reaction producing propylitic alteration
occurred arround 250°C. Sulfur and oxygen fugacites
can be estimated from the stability relations of cha-
racteristic mineral assemblages (Fig. 9). As menti-
oned above, chalcopyrite and pyrite commonly co-
exist with magnetite and hematite with or without
bornite. A possible fs,-fo, condition for copper mine-
ralization can be determined by the pyrite+chalco-
pyrite+magnetite+hematite +-bornite assemblage, hence
the estimated log fs, and log fo, values are about -11
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Fig. 9. The log fs,-log fo, diagram showing the mineral
stability fields at 250°C. The hatched area show the de-
positional condition of sulfide minerals in the Barton
Peninsula. Sulfidation curves are from Barton, Skinner
(1979).

atm. and -34 atm., respectively. Although these esti-
mated T, fs,, and fo, do not represent the whole range
of ore depositonal conditions, the main mineralization
in propylitic alteration zone should have occurred on
these conditions.

STABLE ISOTOPES

Sulfur and oxygen isotopic compositions of sulfide
and silicate minerals separated from altered rocks
were measured in order to clarify the composition of
ore forming fluid. SO, gas, prepared by combustion
with CuO+sulfides powder at 1000°C (Thode et al,
1961), was analyzed to determine the sulfur isotopic
composition of sulfides. Oxygen was extracted from
silicate minerals by fluorine extraction procedure
(Taylor and Epstein, 1962), then was converted to
CO, by reaction with hot carbon. The measurement
of isotopic ratio was performed using a VG Prism 1II
stable isotope ratio mass spectrometer at Korea Basic
Science Institute. The analytical results are reported in
standard & notation; =(Rumpe/Ruantara-1)X 1000. The
sulfur isotope data are expressed relative to CDT, and
oxygen isotope to SMOW. The standard errors are
approximately +0.2%, for S and O.

Sulfur Isotope

The sulfur isotope data of pyrite are listed in Table
3. Disseminated pyrite in altered granodiorite have
&S values of -0.6 to 1%, while the §*S values of
disseminated and veinleted pyrite in altered volcanic
rocks are relatively low, ranging from -9.6 to -1.8%..
The sulfur isotopic composition of sulfide minerals
can be used to determine the sulfur isotope com-

Table 3. Sulfur isotope data of pyrites in the hydro-
thermally altered rocks of the Barton Peninsula.

. ample ~ 3'S Host
Mineral 0. %) Occurrence Rock
pyrite gl 0.6  dissemination  granodiorite
pyrite g3 +1.0  dissemination  granodiorite
pyrite vl -6.9  dissemination  andesitic tuff
pyrite vl -6.8  veinlet andesitic tuff
pyrite v2 -6.4  wveinlet andesitic tuff
pyrite v3 <74 veinlet andesitic tuff
pyrite v3 -79  dissemination andesitic tuff
pyrite v4 -40  dissemination andesitic tuff
pyrite v5 -1.8  wveinlet basaltic andesite
pyrite vo -9.6  dissemination basaltic andesite

posititon of ore fluid (8Sss) and source of sulfur
only when the temperature, fo,, and pH conditions of
ore-forming fluids are known (Ohmoto, 1972). Fig.
10. is a pH-fo, diagram that combines stability fields
of iron sulfides and §*S,, value at 250°C from a
solution which contains 0.001 m of S and 0% of
8"Sss. Sericite occurs as altered mineral adjacent to
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Fig. 10. The log fo.-pH diagram showing the relationships
among the §S,, contours and the stability fields of Fe-S-O
minerals. A slight variation of fo, and/or pH values can
cause drastic variation in the sulfur isotopic composition of
pyrite. The condition of hatched area which is estimated in
Fig. 9. is suitable to explain the §*S,, values in the Barton
Peninsula. Diagram from Ohomoto (1972).
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the contact between granodiorite and volcanic rocks.
Some kaolinite occur in advanced argillic zone (Park,
1991), but kaolinite does not occur in propylitic zone.
This implies that the lower limit of pH of ore fluids
were controlled by the following reaction:

2KALSi;0,(OH)+3H,0+2H "=3A1,81,05(OH),+2K"

At 250°C and mg, of 0.001, stability field of
sericite limits the pH to the value higher than 3.2
(Helgeson et al., 1978). The analyzed §™S,, values
agree with above-mentioned depositional condition
of pyrite at the 'Sy value of about 0% (Fig. 10).
The A*Sg value of about 0% indicates that the
sulfur source is an igneous origin. As shown in Fig.
10, pyrites coexisted with magnetite and/or hematite
can show much lower A*S,, values than the A™Sy
value, and a slight variation of fo, and/or pH in the
ore fluids can cause drastic variation of &S, value.
So the low &*S,, values in propylitic zone can be
explained by high oxidational condition of ore fluids
(Ohmoto and Rye, 1979). The §*S,, values between
granodiorite and volcanic rocks are similar, but it is
noted that 5™S,, in granodiorite are slightly higher
than those of volcanic rocks. This difference is
probably due to the slightly higher oxidational con-
dition when pyrites were deposited in altered vol-
canic rocks than in altered granodiorite.

Oxygen Isotope

The oxygen isotope data of quartz and feldspar in
the Barton Peninsula granodiorite are summarized in
Table 4. The 8'°0 values of quartz are 2.1 to 5.1%.
The 80 values of feldspar vary between 0.7 and

Table 4. Oxygen isotope data of quartz and feldspar
in the granodiorite of the Barton Peninsula.

calculated 80y reacted with
sample 80, 50 fluid (8"*04=-6%) at indicated
1o, %) %) temperature*

150°C  200°C  250°C  300°C

gl 33 45
g 26 38
g 31 07
6 51 25 65 35 10 05
g 21 27
g4 27 39

* Based on fractionation factors from O'Neil and Taylor
(1967). Sodium and potassium feldspar have identical iso-
topic properties within the limits of analytical uncertainty. &
¥04; oxygen isotope value of quartz, §"°Oy; oxygen isotope
value of feldspar, §Oy; oxygen isotope value of ore fluid
(So. et al., 1995).

4.5%, having an average of about 2.8%. These oxy-
gen values are lower than those of average granitic
rocks elsewhere in the world (Taylor, 1978).

The normal fractionation between quartz and alkali
feldspar (A=8""04,-8"°0x) in granodiorite rocks is
about 0.8 to 15% and that between quartz and
plagioclase is 1.0 to 2.5% (Taylor, 1978). Fig. 11.
shows 8'°0 relation of coexisting quartz and feldspar
of the granodiorite in the Barton Peninsula. Two
quartz-feldspar pairs display normal A values, but
the four other pairs show abnormal negative Ag
values. These negative A, values are interpreted as
isotopic non-equilibrium between quartz and feldspar.

If we assumed that the two of normal fractionation
values between quartz and feldspar are equilibriated
oxygen isotope values of fresh granodiorite, the low
3'°0 values of quartz and feldspar suggest that major
magma source is mantle which had low initial 50
vlaue. The reason why 8O, values are higher than
80y, values in the four of quartz-feldspar fairs is
considered as follows. The granodiorite of the Barton
Peninsula is pervasively propylitized, suggesting that
granodiorite had interacted with hydrothermal fluids.
So et al. (1995) calculated &0y of hydrothermal
fluids as -6.0 to 0.8% from quartz veins on the
Barton Peninsula. Assuming that the oxygen isotope
value of hydrothermal fluids interacted with gra-
nodiorite was about -6.0% which is the lowest limit

10 1 1 1 1
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Fig. 11. 80 relations of coexisting quartz and feld-
spar in granodiorite of the Barton Peninsula. Fresh
granodiorite have relatively normal quartz-feldspar frac-
tionation (Aqs) of about 2%, but hydrothermally alt-
ered granodiorite have negative or non-equilibrium
quartz-feldspar fractionation.
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of 8°0y calculated by So et al. (1995), we can
calculate 80y values which were isotopically re-
equilibriated with hydrothermal fluids at various
temperature. Calculated §'°O;, values between 150 to
300°C are well consistent with measured &'°Oy
values (Table 4). This temperature agree with for-
mation temperature of chlorite in granodiorite (186~
287°C) and include assumed temperature of propy-
litic alteration (250°C) as mentioned above. The §"°0
enrichment of feldspar result from oxygen isotope
exchange at low temperature with water having §'"°0
value about -6%. When isotopic fractionations occur
in hydrothermally altered rocks, isotopic exchange
rate of feldspar is much faster than that of quartz
(Criss, Taylor, 1983). Feldspar is more susceptible to
such alteration because they exchange oxygen more
rapidly than do quartz. Thus, feldspar typically under-
goes significant 8'°0 change during hydrothermal
alteration. It is concluded that hydrothermal alteration
at low temperature is tesponsible for higher 80y
rather than §"°0,, of the grano- diorite in the Barton
Peninsula.

DISCUSSION

Propylitic alteration is widespread in th Barton
peninsula. The common altered minerals are acti-
nolite, chlorite, epidote and calcite. Kim ez al. (1995)
report that the mineral assemblage of epidote-chlorite-
calcite change to actinolite-chlorite-epidote from sou-
th to north of the Barton Peninsula, suggesting that
the volcanic and plutonic rocks have experienced
greenschist to amphibolite facies of low pressure
thermal metamorphism. However, the altered mine-
rals are closely associated with ore minerals charac-
terized by pyrite, chalcopyrite and bornite. Moreover
actinolite, major alteration minerals in highly altered
rocks, is preferentially associated with chalcopyrite.
This suggest that the granodiorite and volcanic rocks
have experienced hydrothermal alteration rather than
thermal metamorphism. Eaton, Setterfield (1993)
point out that actinolite-bearing alteration mineral
assemblage is interpreted to be the highest tem-
perature type in the propylitc alteration. The develop-
ment of high temperature type alteration in and
around the granodiorite means that the hydrother-
mal alteration and mineralization are genetically
related to the granodiorite intrusion in the nothern
part of the Barton Peninsula.

Ore deposits of the igneous (hydrothermal) origin
may have a wide range of 5“S values because of the
presence of several generations of minerals deposited
sequentially under different conditions. Moreover, the
8"S values if sulfide minerals depend not only on the

isotopic composition of the total S in the system but
also on the environmental conditions at the site of
deposition (Ohmoto, 1972). The general range of
sulfide 8S values in island arc volcanic rock is -1 to
5% (Taylor, 1987). The sulfide &S values in altered
volcanic rocks of the Barton Peninsula is -9.6 to -1.8%,,
which is isotopically lighter than that of typical island-
arc volcanic rock sulfides. Low 8*S values for sulfides
in some ore deposits may mean that the oxidation state
of the fluids was high or that they incorporated some
sedimentary sulfides. As normal sedimentary sulfides
have a §"S-value between -30 and -10% (Hoefs, 1987),
this suggest that sulfur should be derived either by
hydrothermal solution or by remobilization of volcanic
sulfide in high oxidational condition during the hy-
drothermal alteration.

The §"°O-values of normal granitic rocks is 6 to
10% (Taylor, 1978). However in the Barton Peninsula,
the §'"°O-values of quartz and feldspar in the gra-
nodiorite is 0.7 to 5.1%, and the isotopic fractiona-
tional values of 8O between quartz and feldspar are
negative. The low 8"°0 values of quartz and feldspar
suggest that major magma source is mantle which had
low initial 3°0 vlaue. And isotopic non-equilibrium
between quartz and feldspar of granodiorite can be
attributed to the interaction at low temperature with
meteoric-hydrothermal fluids.

In this study, we can summary the result as fol-
lows; (1) granodiorite intrusion is a small, high level
stock associated with calc-alkaline volcanism, and
have high copper contents, (2) high temperature type
of propylitic alteration and common occurrence of
copper sulfides in and around granodiorite intrusion,
(3) low 8S values of pyrite by oxidational condi-
tions of sulfide deposition, (4) low &0 values of
quartz and feldspar in the granodiorite, and isotopic
non-equilibrium by hydrothermal alteration. It sug-
gest that hyrothermal alteration and mineralization
should be genetically related to granodiorite intrusion
in the Barton Peninsula. Due to the similarities in
subaerial intrusive depth of pluton, age of intrusion
and tectonic setting, hydrothermal alteration and oc-
currence of ore minerals, this area can be compared
to surface expression of the porphyry copper depo-
sits of the Chilean Andes. However, detailed field
studies, accompanied by district zoning of alteration
and mineralogy, and fluid inclusion studies are cri-
tical to further constrain the hydrothermal minerali-
zation of the Barton peninsula, King George Island,
Antarctica.

CONCLUSION

1. Granodiorite is a small and high level stock asso-
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ciated with calc-alkaline volcanism, and have higher
copper contents than average granitic rocks.

2. Propylitic alteration charaterized by actinolite,
epidote, chlorite and calcite is widespread in grano-
diorite and volcanic rocks. The dessiminations and
veinlets of ore minerals such as pyrite, chalcopyrite and
bornite are common in propylitic alteration zone.

3. Actinolite-bearing mineral asemblage, which is
high temperature-type of propylitic alteration, is more
common in and around granodioritic stock. It suggest
that hydrothermal alteration should be genetically rela-
ted to the granodiorite intrusion.

4. The main sulfide depositional conditions of
temperature, sulfur and oxygen fugacity, estimated
by mineral assemblages, are 250°C, 10™ " atm. and
107 atm., respectively.

5. The &S values of pyrites are -9.6 to 1% and
estimated sulfur isotope composition of ore fluid
indicate that the sulfur is igneous origin. The low &S
values of pyrites can be explained by oxidational
condition of sufide deposition.

6. The 8°0 values of quartz and feldspar in the
granodiorite are 0.7 to 5.1%, which are lighter iso-
topic composition than normal granitic rocks, and the
non-equilibriated fractionational values of &0 be-
tween quartz and feldspar result from hydrothermal
alteration at low temperature.
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