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Abstract

The singular value decomposition is a tool which is used to find a linear
structure of reduced dimension and to give interpretation of the lower dimen-
sional structure about multivariate data. In this paper the singular value de-
composition is reviewed from both algebraic and geometric point of view and, is
illustrated the way which the tool is used in the multivariate techniques finding
a simpler geometric structure for the data.
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1. Introduction

A vast majority of data in social science is multivariate and a wide variety of
multivariate techniques - principal component analysis, factor analysis, multidimen-
sional scaling, etc. - are available to analyze such multivariate data. The aim of
these techniques is to find a simple geometric structure among data points which
would either reduce the dimensionality or suggest a possible internal relationships
among units or variables(Murtagh and Heck(1987)).

The singular value decomposition is the tool being used in these multivariate
techniques for those purposes(Gnanadesikan(1977)). Nishisato and Shizuhiko(1996)
used the dual space property of the singular value decomposition for gleaning in
the field of dual scaling. Choi and Huh(1996) derived the resistant version of the
singular value decomposition for principal component analysis. Moreover the sin-
gular value decomposition of the data matrix is computationally far more efficient
than the spectral decomposition of the sample covariance matrix when the number
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of variable is large. Section 2 reviews the singular value decomposition form both
algebraic and geometric point of view. In section 3 we illustrate the way the sin-
gular value decomposition is used in the multivariate techniques, especially in the
principal component analysis and the mutidimensional scaling. Finally we conclude
the properties of the singular value decomposition in multivariate techniques.

2. Singular value decomposition of a data matrix

2.1 Algebraic analysis about singular value decomposition

Let X be a p x n data matrix and consider the grammians X X* and X*X. Then
the eigenvalues of X X* and X*X are nonnegative. Moreover the eigenvalues of X X*

are same as those of X*X. Suppose ay,-- -, ax are the orthonormal eigenvectors of
X X' and that ay,---,a; correspond to the positive eigenvalues of A2 ,---, A2 of
X X! Then {ay,---,a;} is an orthonormal basis of the sample space. Hence data

matrix X can be written as

X = (X'a)al +--- + (Xlap)al + (Xtapy1)ab, g + - + (X'ap)dl (1)
= [a(@fX)+- -+ ar(af X)) + [aks(@f i X) + -+ ap(aX)]
= (ma{ + -+ ara})X + (api1ahyy + -+ apal) X
= (@@l 44 apad)X

because for j =k +1,---,p, XXla; =0
Forj=1,--- k

XX'a; = )\Jzaj

atXX'a; = /\Jz-ajaj
laiX]=2; >0
Define {c1,--,cx} such that
Ajcj = Xta; for j=1,---,k (2)
From (2)
Aidjclej = alX X'a; = Alata;
Thus 1 if i
if i=j
CﬁCj = {

0if i£j 1<ij<k
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On the other hand
XX Xe; = XHX Xaj) = XE(AD) = AD\e;

Therefore X! X¢; = Me;
Hence cy, - - -, ¢ are the orthonormal eigenvectiors of X*X correspond to the k pos-
itive eigenvalues \},---, A2 of X'X.

By (2), (1) is written

X = /\1a10t1 + -+ Akakcfc (3)
(3) is called the singular value decompostion of X. The numbers Ay, - -, Az are
the singular values of X and the vectors ay,---,ax and ¢y, --, ¢ are the right and

left singular vectors of X. Shin(1982) compared the singular value decomposition
of the data matrix and the spectral decomposition of the sample covariance matrix.
The singular value decomposition is more powerful than commonly used spectral
decomposition.

2.2 Geometric analysis about singular value decomposition

The singular value decomposition of X provides an immediate analysis of the
effect of X regarded as a linear transformation acting on the vectors of Euclidean
n-space E, and p-space E, resp.. For any such vector a is of the form

a =161+ + Brax + Bry10r1 + - + Boap

where a1, -, ap completes the orthonormal basis of E,, and

X'a = Bridicr + - - + Bedec

Thus a is first projected into the k-manifold spanned by ay, - - - ax, then the k co-
ordinate are scaled by factors Ay, - - -, Ak, and finally the resulting vector is pictured
with the same co-ordinates in the k-manifold spanned by ¢y, -- -, c;.

If q is a positive integer,

(XXt = A?qalaﬁ 4+ 4 /\iqakafc
(X'X) = Aeich + -+ Aeiel
(XXHIX = A" arch + - 4+ A el
(XtX)IXt = N2t legt 4o 4 Ai‘”’lckai
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Then (X X*)? and (X'X)? are matrices representing the projection of p and n
space into the k-manifolds spanned by (ay,---,ax) and (c1,-- -, ct) resp.. By means
of generalized matrix inverses, we can obtain the equations for negative integers
q. The iterative procedure for calculating the singular value decomposition of data
matrix is easy to program for a computer and will usually be numerically stable
when only the first few terms of the singular value decomposition are required. If
all the terms are wanted then analogues of many of the comments and techniques in
Wilkinson(1965), chapter 9, would be relevant. The iterative method is especially
pertinent for large sparse matrices.

3. Singular value decomposition in data reduction
techniques

3.1 Singular value decomposition in principal component analysis

Main concern of principal component anaivsis is the recognition of lower dimen-
sional linear subspaces which the multi-respo::ses observations may, statistically, lie.
The basic idea of principal component analysis is to describe the dispersion of an
array of n point in p demensional space by introductory a new set of orthogonal
linear co-ordinates so that the sample variances of the given points which respect
to these derived co-cordinates are in decreasing order of magnitude(Jackson and
Hearne(1975)). The first principal component is such that the projections of the
given points onto it have maximum variance among all possible linear co-dordinates
; the second principal component has maximum variance subject to being orthogonal
to the first ; and so on. We hope that the first principal component will be counted
for most of the variation in the original data so that the effective dimensionality of
the data can be reduced. By centring of the original data, we can have the origin
as mean of data. Suppose X = (Xi,---,X},) is a p-dimensional random variable
with mean 0 and covariance matrix > (= XX*). A (p x n) dimensional random
matrix X represent a multivariate statistical sample of n observations on p variable.
Then the jth principal component is the eigenvector associated with the jth largest
eigenvalue \; of covariance matrix » . If A; # ); the elements can be chosen to be
orthogonal, although an infinity of such orthogonal vectors exists. Let us denote the
(p x p) matrix of eigenvectors by A, where A = (a1, --,ap) and the (p x 1) vector
of principal components by Y, then Y = A'X. The (p X p) covariance matrix of Y
be denote by A and is clearly given by

M - - - 0
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Hence
P
_ At
D= Miaig
i=1

From above results principal component analysis is related the spectral decom-
position of the covariance matrix. Since the spectral decomposition is the special
case of the singular value decomposition, we can say that principal component is
related to the singular value decompositon of the data matrix X.

The equations, X!*Y""' X = ¢, for arrange of non-negative value of ¢ define
a family of concentric ellipsoides in the p dimensional space of X. The principal
component transformation of the data is just the projections of the observations
onto the principal axes of this family. Although the eigenvector corresponding to
the largest eigenvalue provides the projecton of each point onto the first principal
component, the equation of the first principal component co-ordinate is given by
the conjunction of the equations of planes defined by the remaining eigenvectors.
More generally, most of the variability of a p-dimensional sample is confined (p — q)
dimensional linear subspace, that subspace is described by the (p — ¢) eigenvectors
which correspond to the (p — q) small eigenvalues.

By eigenanalysis, we judge the relative magnitudes of the eigenvalues, both for
isloating ”negligibly small” once and for inferring groupings, if any, among the oth-
ers. Thus by the singular value decomposition of the data matrix, we can have the
variational interpretation of the data.

3.2 Singular value decomposition in multidimensional scaling

Given a set of observed measures of similarity or dissimilarity between every pair
of n objects, find a representation of the objects as points in Euclidean space such
that the inter-point distances in some sense "match” the observed similarity or dis-
similarity. Multidimensional scaling aims to find a configuration in a much smaller
number of dimensions which approximately reproduce the given dissimilarities. Sup-
pose the data matrix X have the exact co-ordinate of n points in p-dimensional
Euclidean space. Let B,x, = X'X, where (r, s) term of B is given by

P
brs = Zerij (4)
7=1
The (n x n) matrix of squared Euclidean distance, D = (d,s), is then such that

drs = Z?:l(xrj - xsj)z
brr + bss - br.s (5)

I
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In mutidimensional scaling, consider the inverse problem. Suppose we know the
distance but not the co-ordinate. So we want to estimate the co-ordinate. First we
find the B matrix. From (4) and (5)

1
brs = =3 d7, — df — &, + ]

where  d2 = average term in rth row
d” = average term in sth column

d? = overall average squared distances.

Since D consists of the squares of exact Euclidean distances, B is a positive sym-
metric matrix. Suppose rank of B is k where kK < n. Then B will have k nonzero
eigenvalues which we arrange in the order of magnitude so that A\; > --- > Az > 0.
The corresponding eigenvectors of unit length will be denoted by {c;}. To scale the
eigenvectors so that their sum of squares is equal to A;, we set

€ = \//\—ici

By the Young-Hausehold factorization theorem, a positive semidefinite matrix
B can be factorized into the form X‘X. Let X' = (e1,---,ex) , then

0

€f

(X' X)e;i=X'| e |a=X = v hie; = \ie; = B

oMo .

€

0
Since the {c¢;} forms an orthonormal basis, B = X’X. Hence the co-ordinate
of the rth point or individual are given by the rth component of the {e;}. Let we

denote the (k x k) matrix of eigenvectors of B by C, where C = (cy,- -, cx).
Then

B = X'X
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€1
~ (e )
Ck
A1 - - -0 c1
(e )| o o
0 xn) e

Therefore, multidimensional scaling is related to the singular value decomposi-
tion of the co-ordinate matrix B.

4. Conclusion

By the sngular value decomposition of a data matrix X, we can find the linear
structure in data reduction techniques such as principal component analysis and
multidimensional scaling.

The grammian of the (mean-adjusted) data matrix is a real symmetric matrix.
Thus the linear structure in principal component analysis is an ellipsoide concerned
on the origin and using as co-ordinate axes as its principal axes. Also the structure
in multidimensional scaling is an ellipsoide concerned the origin and using as co-
ordinate axes as the principal axes resulting from a principal component analysis.
The above results are related to the spectral decomposition of X X*(or X*X). But
the square of singular value of X is the eigenvalue of X X*(or X*X). The right sin-
gular vector is the eigenvector of X X' and the left singular vector is the eigenvector
of X*X. Then the stationary point of above ellipsoide is the right(or left) singular
vectors of data matrix X. Therefore, through the singular value decomposition of
X, we can find the linear structure of the reduced dimension and give interpretation
of that subspace.

Moreover there are certain advantages in using singular value decomposition over
spectral decomposition as the tool for multivariate data reduction. The singular
value decomposition is computationally far more efficient than the spectral decom-
position of the sample covariance matrix when the number of variable is large. And
working directly with data matrix X, we can also maintain first-hand feeling for the
data which would have been at best diminished if X X* were used as instead.
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