Journal of Statistical
Theory & Methods
1998, Vol. 9, No. 1, pp. 77 ~ 88

Boundary Corrected Smoothing Splines !
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Abstract

Smoothing spline estimators are modified to remove boundary bias effects
using the technique proposed in Eubank and Speckman (1991). An O(n) al-
gorithm is developed for the computation of the resulting estimator as well as
associated generalized cross-validation criteria, etc. The asymptotic properties
of the estimator are studied for the case of a linear smoothing spline and the up-
per bound for the average mean squared error of the estimator given in Eubank
and Speckman (1991) is shown to be asymptotically sharp in this case.
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1. Introduction

Smoothing splines provide a popular tool for nonparametric regression. How-
ever, these estimators are known to have certain “boundary bias” problems that
result from the rather peculiar way they handle estimation in the boundary re-
gions. Methods for removing these boundary effects have been proposed in Eubank
and Speckman (1989). In this paper we further explore the properties of the Eu-
bank/Speckman boundary correction. In particular, we develop a O(n) algorithm
for computing a boundary corrected smoothing spline and other related quantities
such as the generalized cross-validation criterion. We also examine the asymptotic
properties of the boundary corrected estimator in the special instance of a linear
smoothing spline.

Consider now the nonparametric regression problem where responses v, - .., Yn
are obtained at non-coincident design points ti, ..., ¢, from the model
yi:u(ti)—l-ei, i=1,...,n. (1)
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Here p is an unknown regression function and ¢, ..., ¢, are zero mean uncorrelated
random errors with common variance o?.
There are a number of estimators that can be used for p in (1). Our interest is
in the mth order smoothing spline p that is obtained by minimizing
n tn
Y (- FE)P A [ AR Ao @)
1

1=1

over all functions f with (m— 1) absolutely continuous derivatives and a square inte-
grable mth derivative. If n > m, (2) has a :.nique minimizer that is a natural spline
of order 2m with knots at the design points (See, e.g., Wahba 1990). The quantity A
in (2) is called the smoothing parameter and it controls the level of smoothing that
the estimator performs on the data. The value of A can be selected using data-driven
techniques such as generalized cross-validation that will be discussed in more detail
subsequently.
Suppose that we assess the performance of u) through its average mean squared
error or risk .
Ra(A) =07 Y E (ualts) — u(t:) 3)
i=1

Then it is known ( Rice and Rosenblatt 1983, Eubank 1988, Chpt. 6 ) that
inf Ra(}) = O(n~7m1), (4)

i.e., px provides an mth order estimator of u. However, this rate can improve
substantially and we can have

inf Ra(X) = O(n” ) (5)
if 1 has 2m derivatives and satisfies the natural boundary coditions
pmT(0) = pm (1) =0, j=1,.,m. (6)

This states that p) actually provides a 2mth order estimator if u is sufficiently
smooth and satisfies (6).

In practice we will not generally know how many derivatives pu might possess.
Thus (5) is a good quality in that it suggests that u) may be able to utilize ex-
tra, possibly unexpected, smoothness in g to produce a more efficient estimator.
However, the need for condition (6) makes the actual utility of this result circum-
spect since it is unlikely that one would be fortunate enough to have the underlying
regression function satisfy the natural boundary conditions in practice.

Eubank and Speckman (1989) and Oehlert (1992) have developed methods of
altering the smoothing spline estimator so that (5) holds regardless of whether or not
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(6) is true. Oehlert’s approach is to modify the smoothness criterion fttl" £ ()2dt
- in a way that removes the boundary effects. This approach is quite effective but the
resulting estimator appears to be somewhat difficult to compute. Thus, we focus
insted on the Eubank and Speckman (1989) method for boundary adjustment.

To describe the Eubank/Speckman approach let Sy be the n x n matrix which
transformations the response vector y = (v, .. ., yn)T to the vector of fitted values
for the smoothing spline estimator, i.e.,

pr = (ua(t1), ..., u(ta))T = Shy. ()

Now define 3mth order polynomials (go;, q1;), ¢ =1, ..., m such that for k =1, ....
m

q(()TJrk—l)(O):@k, q(()T+k_1)(1)=0, | (8)
a7 0 =0, ¢HN) =6y, 9)

and set ¢;; = (gi;(t1), - .., Gij(ta))T fori=1,..., m and j = 1,2. We then take

Q = [go1, @11, 902, G125 - -, Goms Qim)

and define the boundary adjucted estimator to be
=+ QQTQ) QT (y — 1) (10)

for ;
Q=(I-8,)Q (11)

Eubank and Speckaman (1989) give an upper bound on the risk for u) which ensures
that if 4 has 4m derivatives then

inf n™'E (u— i) (- i) = O(n~ 1), (12)

even if (6) does not hold.

It follows from Eubank and Speckman (1989) that one may interpret b =
(QTQ)‘IQT(y — 1)) as an estimator of the vector (u(™(0), p™ (1), ..., pm=1(0),
p®m=1)(1))T. Thus, (10) has the interpretation that the boundary behavior of p, is
being adjusted using 2m transformed by (I—S,) polynomials that are in one-to-one
correspondence with each of the 2m natural boundary conditions in (6). This fact
can actually be used to develop statistical tests for the whether or not boundary
corrections are needed. We will discuss this point further in the sequel.

In the next section we develop an order n algorithm for the computation of p)
in (10) as well as other related quantities such as the generalized cross-validation
criterion that can be used for selecting A. Then, in Section 3 we study the asymptotic
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properties of fiy in the special case of m = 1. In this instance we are able to
develop large sample expression for the bias of fi) that allows us to characterize
asymptotically the effect of the bias correction and show that the Eubank/Speckman
upper bound for the risk is sparp in this case. Several technical lemmas that are
needed for the work in Section 3 are collected in Section 4.

2. Computation of the estimator

In this section we describe a O(n) algorithms for the computation of fiy in (10).
This algorithm can be used in conjuction with any order n method for conducting
the tranformation (7) such a those given in Reinsch (1967, 1971), de Boor (1978)
and Kohn and Ansley (1987). In particular, the simulation results discussed at the
end of the section were obtained using a modification of the code in de Boor (1978).

Oberve from (10) that

by = py + Qb (13)
for b any solution of o 3

Q"Qb = @7y (14)
with § = (I — 8,)y. Therefore, to compute /i) we can transform Q and y to Q and
¥ in order n operations and then obtain b through ordinary least-squares regresion
of y on Q. Thus, b can be computed using statndard statistical software given an

efficient method for computing 4§ and Q.
Once b has been computed ji, and the residual sum-of-squares

RSS(A) = (v — in)" (v — ma)

can then be computed in O(n) operations using (13). It will also generally be
necessary to use a data-driven choice for the smoothing parameter of the modified
estimator. One way to accomplish this is to use the value of A that minimizes the
generalized cross-validation criterion

_ nRSS(X)
GCV(A) = T H, (15)
for
H), =8,+Q(Q"Q)'QT(1-5) (16)

the hat or smoother matrix for the fiy. This requires the computation of tr Hy and
we now show how this can be accomplished.

First note that there are several O(n) algorithms for computing tr Sj; see, e.g.,
Hutchinson and de Hoog (1985). Given any such algorithm, the problem then re-
duces to the computation of

T=tr QQ'Q)'QT(I~8)=tr (Q"Q'QTQ
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for Q= (I-S)Q. Set Q = [@1, ..., d2m)- Then, we can compute T by solving the
2m normal equation systems

QTQafi = QTqi7 i=1,...,2m. (17)

Again, this can be done with standard least squares software and the resulting
trace is

T= z": i (18)
i=1

for a;; the ith element of a; in (17).

As noted in Section 1, there is a one-to-one relationship between the polynomials
used in the boundary correction and the boundary conditions in (6). If u(*+i-1(0) =
0 then the go; term in the estimator is not necessary and, similarly, q1; s not needed
if p"+3=1(1) = 0 statistical assessment of whether or not a particular boundary
conditions holds or, equivalently, whether a particular g;; is needed in the estimator
can be obtained by comparing the corresponding element of b in (14) to its estimated
standard error. Thus, it may be useful to also compute an estimator of the varian-
covariance matrix for b in some cases.

For fixed ), the variance-covariance matrix of b is

V =03QTQ) Q7 - 8)2Q(QTQ) !

assuming that Q is full rank, which is generally the case. The variance 02 in V can
be estimated using methods such as those in Gasser, et al (1986). To compute the
elements of (Q7Q)1QT(I — 8)2Q(QTQ)! we solve the linear systems

Q'Qa; =c;, i=1,... , M, (19)

for c1, ..., ¢, the column of the 2m x n matrix QT(I —S). Note that although there
are n systems, each system can be solved in order m3 calculations so that all n of
the a; can be obtained in a total of O(n) operations. If a; = (@14, - - - azm,i)T then
the ijth element of V is
n
Z AirQjr
r=1

apart from the factor 02. These quantities can be accumulated to avoid storage of
the a;.

We have implemented the algorithm described above for thre cubic smoothing
spline case of m = 2 in (2). In this instance the polynomials in (8) can be chosen to
be

1, 1.,

1
q1(t) = 51:2 ~ Zt“ + 15t
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Figure 1: Smoothing spline fits to a simulated data set.
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1l 1,4 14
and . .
qu2(t) = — =t + 5.
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The smoothing spline transformation (7) is then carried out using a modified version
of the FORTRAN code in Section of de Boor (1978) with trS, computed by the
Hutchinson and de Hoog (1985) algorithm. For each value of A\ we then construct
a Cholesky factorization of the 4 x 4 matri: Q7q as TIT for T upper triangular.
The same matrix T is then used repeadedly to solve the systems (14), (17) and (18)
by back substitution.

To test our code and also see the practical effects of boundary correction for the
cubic case we conducted a small simulation. Data was generated from model (1)
using normal random errors with 0% = .1,n = 50, ¢, = (26—1)/2n, i=1,...,nand

ult) = 79(0) + C* [0 - 0P + 801~ 9] / 2 (20)

for
g(t) =1(t>.9) (10t —9)° (21)
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with I (A) the indicator function for the set A. Note that p satisfies the lower
boundary conditions in (6) for m = 2 but the upper boundary conditions are not
met unless v = 0 in (19). By increasing -y a way from zero we move the regression
function further away from the situation where (5) can be expected to hold.

For each data set both regular and boundary corrected cubic smoothing spline
were computed with their repective smoothing parameters selected by generalized
cross validation. The results for a typical data set with v = 0.05 in (19) is shown
in Figure 1. Notice that the two estimators are virtually identical at the lower
boundary but differ near 1 where the natural boundary conditions do not hold.

3. Asymptotics for m =1

While (12) ensures that the risk will be improved by boundary correction when
(6) fails to hold, it would be useful to have more precise information concerning
the asymptotic form of the risk. The problem with obtaining such a result is that
there is not an easily manipulated closed form for the smoothing spline estimator in
general. This makes it quite difficult to charactize the asymptotic behavior of the
risk even for the non boundary corrected estimator (cf Rice and Rosenblatt, 1983).

Eubank (1997) has shown that in the special case of m = 1 and a uniform design
it is possible to the obtain uniform approximations for the pointwise variance and
bias of a smoothing spline. Thus we now specialize to the case of m = 1 with
t; =(2i—1)/2n, i=1, ..., n, and employ these approximation to the analyze the
boundary corrected linear smoothing spline.

For the case of m = 1 we can choose the polynomials (8) - (9) to be

q(t) =t — %tQ (22)

and .
qa(t) = 5t2.

Now let gox and g1\ be the linear smoothing spline approximations to gy and ¢;.
More precisely gox and ¢, are the functions obtained by minimizing the criterion

(23)

WS o(t) — S+ [ (07 (21)
i=1 0

with respect to f using g(t;) = qo(t;), ¢ =1,..,nand g(t;) =qi(t;), 1 =1, ..., n.
respectively. If we now define

@i(t) = qi(t) ~ an(t), i=0,1 (25)
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then the boundary corrected linear smoothing spline is

ix = pa(t) + bodo(t) + b1Ga (), (26)

where o n
bo = (qu Y do(t:)w — Gor Y _ G (t:)wi)/ (Goodins — o) (27)

i=1 i=1

and o o
b= (Goo Y qu(ts)w — qon Y do(t:)ys)/ (Gooda1 — @) (28)

i=1 i=1

for N
G = Y Gt)d (), 4,5=1,2. (29)
k=1

We can use expressions (25) - (28) along with the approximation lemmas in Section
4 to obtain large sample expressions for the bias risk of the estimator. In what
follows we will impose the restriction that A — 0, as n — oo in such a way that
logn/nA2 — 0. Under this condition we have from Lemma 1 in Section 4 that

do(t) = Vae/V* £ O())
and
G (t) = Vae /Y2 L o(n)

Lemma 3 then gives that
E by = 4/(0) + O(V)
and

E b = p/(1) +O0(WN)
Thus, the bias of [iy is

u(t)—E @x(t) = p(t) —E ()
—p OV e VA — ! (1) Relt=D/VA (30)
+HOA(e™tVA + et=D/YY) 4 2572,

Expression (30) clearly shows that fi) gives an adjustment to the bias of the original
estimator u) by subtracting off terms corresponding to each of the boundaries. Note
that the correction is localized to the boundaries in Lemma 1 combined with (30)
gives

p(t) — B fa(t) = M (t) + O(N?)

for any fixed ¢ € (0,1). Thus iy how the bias properties of a second order estimator
in the interior on [0, 1] as does uy. However, for boundary points such as a t = Vv
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or t = (1—+/A)v we still have p(t) = E fix(t) = O(X) while p(t) — E py(t) is of exact
order vA. Thus, jiy has effectively reduced the pointwise bias of uy to that of a
second order estimator at the boundaries.

Theorem 1. Assume that A — 0 as n — oo with logn/nA2 — 0 and that
p € C°[0,1]. Define uo(t) = pu(t) — 1 (0)qo(t) — ' (1)1 (t) for go and gy in (21) - (22).
Then

Rah) = n'Y B (it - u(t)?

=1
1 2
= H(Ef e+ 2714 0(1) + 02 +07Y)

Proof. Define Q to be the n x 2 matrix with 4 element gi-1(t:), i =1, ..,
n, j = 1,2. If we now take po = (uo(t1), - - ., po(tn))T we have

p—E fix = jio - Q(QT Q)" Qo
with o = (I — Sx)uo, Q = (I — S»)Q and S, the S, smoother matrix in (7) for the

linear smoothing spline.
Using Lemma 3 in Section 4 we obtain

= _AM2L14L0WA)  O(W) }

nQIQ = [ OWN)  1+0(WX)

and
n~'ig Q = (0(X%),0(A%)
since 11(0) = pg(1) = (1) = 1(0) = 0 and ¢4(0) = ¢{(1) = 1. Thus,
nHp—BL)T(n—Eh) = n o —n i (QTQ) QT fi
= /\2/0l pll()2dt + O(N2 + n71).

For the variance part of Rn(/\) we can write and observe that
trHy = trS% +2 — trS)\QQ(QTQ)_IQT.

The trace term is a most 2 in magnitude since the eigenvalues of S, are all bounded
by 1. The proof is then completed using Lemma. 4.

It follows from the Theorem that an asymptotically optimal choice of the smooth-
ing parameter for fi) is provided by

1 2/5
An = (02/471 / u(’)’(t)2dt>
0
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which produces the risk

a2 4/5 1/5
R,(Ar) =1.25 ( ) (/ o (t)Zdt> +o(n™4%y.

Thus, /i) behaves essentially like a boundary corrected, second order kernel estimator
in terms of its I‘lSk asymptotics. However, there is an important difference in that
(30) involves [§ ug(t)%dt rather than [ u Y 1" (t)2dt which is that would be expected
from a kernel estlmator Note that

[ sapan= [ - ([ w t)?) < [ ey

with strict inequality unless 4/(0) = ¢/(1) = 0. Thus, the boundary correction that
is being made to u) actually has a global impact on the estimation risk.

4. Lemmas

In this section we prove several lemmas that are needed for the proof of Theorem
in Section 3. All the results that follow pertain only to the case of a linear smoothing
spline with a uniform design t; = (2{ — 1)/2n, 1 =1, ..., n.

For any function g let g, be its linear smoothing spline approximation obtained
by minimizing

- _}i(g(tz') — f(t))* + A /0 1 f(4)2dt

over all absolutely continuous functions f with square integrable derivatives. For
convenience we will suppress the A subscript and use the notation

g=g9— g\

to denote the error in approximating g by g,. The function § is also the bias from
a linear smoothing spline fit to a data set with regression function g.

Our first three lemmas provide asymptotic approximations to the linear smooth-
ing spline bias and bias inner products.

Lemma 1. If g € C3[0,1] and X < n~% for v € (0, 1), then

logn

3(t) = VAG (E)hn(t) — Ag" () — Ag" () han(t) + 0( + A2

uniformly in ¢ € [0, 1] for
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1—

~
Ia
S

hip(t) =ex —e
and
t—1 =2 t
hoy(t) = evX — —eVX,
2 =5 VA

Lemma 2. If A < n=8 for some v € (0,1) and g € C?[0, 1], then

. 2 (g(1) + (~1)g(0)) + O(A + L)
nU Y gtk (k) =
OO + 1), if ¢/(0) = ¢'(1) =0.

Also,
e ; 1
n lgg(ti)hz\(ti)hr,\(ti) = OV + m)
for r = 1,2 with j = 2 when ¢(0) = g(1) =0 and j = 1 otherwise.

Lemma 3. If A — 0 as n — oo with logn/nA? — 0 and f, g € C°0,1], then

n )\3/2

Z (t:) f(t:

=1
If g'(0) = ¢'(1) = f(0) = f'(1), then

—— (6 (Mf' (1) +¢'(0)f'(0)) + O(A?).

n . 1
n"V Y G(t) f(ts) = X /0 g" (&) " (8)dt + O(N/2).
=1
Lemma 4. If A — 0 as n — oo with logn/nA% — 0, then n~trS, = —4n1\/X(1+0(1))'
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