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Abstract. In this paper the linear algebraic system obtained from a singular integral equation with

variable coe�cients by a quadrature-collocation method is considered. We study this underdetermined

system by means of the Moore Penrose generalized inverse. Convergence in compact subsets of [�1; 1] can

be shown under some assumptions on the coe�cients of the equation.
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1. Introduction.. @ < 11111111111 <<

The purpose of this study is the investigation of some properties of the underde-

termined linear algebraic system obtained from singular integral equations (SIE's) by

direct quadrature-collocation based on nonclassical nodes. We are able to characterize

some properties of the system.

Contrary to what happens for Fredholm equations, in SIE's because of the presence

of the Cauchy principal value singularity the n quadrature nodes used to discretize the

singular integral cannot be employed to collocate the functional equation resulting from

the previous operation. Other nodes are thus necessary. If this other set of nodes is

chosen appropriately, it turns out that they need to be the n � � zeros of a certain

orthogonal polynomial of a family related to the one that provides the quadrature

nodes.

Recent investigations, see [15, 14, 8], have dealt with the problem of studying

the e�ect of a \suboptimal" choice of the second set of nodes. In case of constant

coe�cients, we replace appropriate Gauss-Jacobi nodes with the more easily generated

Chebyshev nodes [15, 14].

For variable coe�cients, the quadrature and collocation nodes arise from nonclas-

sical families of orthogonal polynomials, [4], and are di�cult to construct. A recently

proposed solution scheme replaces these nonclassical families by standard Gauss-Jacobi

orthogonal polynomials, [8]. In both cases, the value of the unknown function at the

collocation set is nonzero and hence cannot be ignored. Thus extra unknowns arise

using this procedure. In order to obtain a square system, another formula needs to

be used. It can be a quadrature of a di�erent type, applied however using the same
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nodes, or an interpolatory formula relating the value of the unknown function at the

two sets of nodes. These procedures have the drawback that they double the size of

the discretized linear algebraic system.

If we want to use a \standard approach", there is the need of using nonclassical

orthogonal polynomials, whose e�cient calculation is not yet available. An alternative

is to try to avoid the use of these polynomials by looking only at the asymptotics

of the equation, i.e. at the singular endpoint behavior, expressed by the constants �

and � de�ned in the next paragraph. The disadvantage however is the fact that for

variable coe�cient equations, the quantity � (�+ �) is not an integer, the index of the

equation, as it happens in the case of constant coe�cients. We try here a di�erent

approach, by avoiding to look directly at the asymptotics, retaining however the use

of classical Jacobi polynomials. Under suitable assumptions on the coe�cients, we are

able to show convergence in compact subsets of [�1; 1], but the price we pay consists in
the convergence rate being a�ected by the use of this \unprecise" endpoint singularity

information and by the growth of the error constant.

The note is organized as follows. In the next section we give the mathematical

description of the problem. Section 3 is devoted to the presentation of the numerical

method, and the last section contains the results of the analysis.

2. Preliminaries. We consider here the dominant singular integral equation with

variable coe�cients

a (x)� (x) +
b (x)

�

Z 1

�1

� (t)

t� x
dt = f (x) � 1 < x < 1:(1)

Let H� [�1; 1] denote the class of H�older continuous functions of exponent � on [�1; 1],
i.e. the functions y (x) that satisfy the H�older condition (H-condition)

jy (x)� y (t)j � C
0 jx� tj� ;

for a suitable constant C0 > 0; and 0 < � � 1. We assume that the coe�cients are

real valued functions on H� [�1; 1], satisfying r2 (x) = a2 (x) + b2 (x) > 0, for every

x 2 [�1; 1]. By choosing a continuous path for the function

log
a (x)� ib (x)

a (x) + ib (x)
;

it is then possible to �nd integers M and N such that the quantities �0 and �0 given

by

�0 =
1

2�i
log

a (1)� ib (1)

a (1) + ib (1)
+M; �0 = �

1

2�i
log

a (�1)� ib (�1)
a (�1) + ib (�1)

+N;

satisfy j�0j ; j�0j < 1, for more details see [4]. The index of the equation is then de�ned

as � = �(M +N). The fundamental function of the problem can be represented as

Z (x) = (1� x)�0 (1 + x)�0 
(x) ;
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where 
(x) is a positive smooth function on [�1; 1]. Classically, a new unknown func-

tion ' (x) is de�ned by

� (x) = Z (x)' (x) :

The singular operator in (1) transforms any function � (x) locally satisfying the H-

condition, into a new function � (x) which also locally satis�es the H-condition; hence

the right hand side f (x) must also locally satisfy the H-condition in order that the

solution satis�es the H-condition, [11]. On the other hand, the solution � (x) locally

satis�es the H-condition if f (x) is assumed to locally satisfy the H-condition [11]. Since

both a (x) ; b (x) 2 H� [�1; 1], then also ' (x) 2 H� [�1; 1]. One more �nal assumption

is made on the coe�cient b (x), namely that it is a polynomial. More general conditions

leading to this situation are discussed in [5], [6] and [1].

In the standard approach, use is made of families of nonclassical orthogonal poly-

nomials with respect to the weight function Z (x). The related quadrature nodes and

weights are di�cult to compute. A major di�erence with respect to equations with

constant coe�cients consists in the fact that � (�0 + �0) 6= �.

Our basic approach here is still to try to exploit properties of classical Jacobi

polynomials, at the expense of having to deal with less smooth unknown functions.

We indeed rewrite the function � (x) in terms of a suitable Jacobi weight � (x), to be

speci�ed below, in order to express explicitly the singular behavior at the endpoints in

a \classical" manner, and a new unknown function y�(x) such that

�(x) = �(x)y�(x):(2)

The introduction of the function � (x) tries to capture the singular endpoint behav-

ior of the solution, but not completely. Speci�cally, the exponents � and � are chosen

according to the following rule. Since (�0; �0) 2 (�1; 1) � (�1; 1), we orthogonally

project (�0; �0) onto the line y = �x+ �, � 2 f�1; 0; 1g, to �nd the point (�; �). The

integer � is chosen so that � = �1, if �0; �0 > 0; � = 1 if �0; �0 < 0, and � = 0

otherwise. To be speci�c, we have

� =
1

2
(��+ �0 � �0) ; � =

1

2
(��+ �0 � �0) ; � (x) = (1� x)� (1 + x)� :

Notice that with this choice,

j�0 � �j <
1

2
; j�0 � �j <

1

2
; max (�; �) � �

1

2
:(3)

It follows that

y
� (x) = (1� x)�0�� (1 + x)�0�� u (x) ;(4)

and if u is smooth,

y
� 2 H� [�1; 1] ; with � = min (j�0 � �j ; j�0 � �j) :(5)
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Recall indeed the inequality jx� � y� j � jx� yj� , �1 < � < 1, see [10], p. 57.

The integral in (1) can be discretized by a classical Gaussian quadrature with

weight � (x). Let P
(�;�)
n (x) denote the Jacobi polynomial of degree n relative to the

weight function � (x), and P
(��;��)
n�� (x) the one of degree n�� relative to the reciprocal

weight ��1 (x). Let also ti represent the zeros of P
(�;�)
n (x) and sj those of P

(��;��)
n�� (x).

We will need the following

Lemma 1 . The Lebesgue constant for interpolation to y� on the zeros of the

Jacobi polynomial grows like

n
max(�;�)+ 1

2 ; for max (�; �) > �
1

2
; logn; for max (�; �) = �

1

2
:

Proof. See Theorem 14.4 of [13]. By (5) and (3) its assumptions hold.

If � � 0, the theory of singular integral equations states that the solution is unique,

but for existence, in case � < 0, the right hand side has to satisfy � orthogonality

conditions. If � > 0 instead, the solution is not unique. To determine it uniquely, we

need extra conditions, which we take as

1

�

Z 1

�1
P

(�;�)
k

(t)� (t) dt = Kk; k = 0; :::; � � 1:(6)

Equation (1) can be rewritten as follows

a (x) � (x) y� (x) +
b (x)

�

Z 1

�1

� (t) y� (t)

t� x
dt = f (x) :(7)

To evaluate the singular integral in (7), we will use Hunter's method [7]. Let

 
(�;�)
n (z) =

Z 1

�1
�(t)

P
(�;�)
n (t)

t� z
dt = 2(z � 1)�(z + 1)�q(�;�)n (z); z =2 [�1; 1];

where q
(�;�)
n represents the so called Jacobi function of the second kind. We can de�ne

the values of the function  
(�;�)
n (x) on the interval [�1; 1] as follows

 
(�;�)
n (x) �

1

2

n
 
(�;�)
n (x+ i0) +  

(�;�)
n (x� i0)

o
:

It can be expressed explicitly by means of the hypergeometric function, [13], but in this

case using (2.1) of [9] it reduces to

1

�

Z 1

�1

P
(�;�)
n (t) � (t)

t� x
dt = cot (��)P (�;�)

n (x) � (x)�
2��

sin (��)
P

(��;��)
n�� (x) :(8)

Then Hunter's method takes the form

Q
�

n (y
�
; x) =

nX
i=1

wiy
�(ti)

ti � x
+
 
(�;�)
n (x)y�(x)

P
(�;�)
n (x)

:(9)
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The singular integral is thus replaced by the above quadratureZ 1

�1

�(t)y�(t)

t� x
dt = Q

�

n(y
�
; x) + �G (x) ; for x 2 (�1; 1)(10)

and �G represents the quadrature error, and the quadrature weights have the explicit

expressions

wi =

Z 1

�1
�(t)

P
(�;�)
n (t)

(t� ti)P
(�;�)0

n (ti)
dt(11)

= 2�+�
�(n+ �)�(n+ �)

� (n) �(n+ �+ � + 1)

2n+ �+ �

P
(�;�)0
n (ti)P

(�;�)
n�� (ti)

; i = 1; 2; : : : ; n(12)

3. Discretization . Recall that sj 6= ti, j = 1; :::; n��, are the zeros of P (��;��)
n�� (x);

using (8) let us de�ne for j = 1; : : : ; n� �;

dj � a (sj) � (sj) +
b (sj) 

(�;�)
n (sj)

�P
(�;�)
n (sj)

� � (sj) [a (sj) + b (sj) cot (��)] :(13)

From this, (10) and (9), collocating at the node points , we have

djy
� (sj) +

b (sj)

�

nX
i=1

wiy
� (ti)

ti � sj
+ �G;j = f (sj) ;(14)

In case of positive index, the normalization conditions can also be discretized using

standard Gauss-Jacobi quadrature over the same nodes and with the same weights.

Thus

nX
i=1

wiP
(�;�)
k

(ti) y
�(ti) + �

0
G;k = Kk; k = 0; :::; � � 1;(15)

where �0
G;k

are the components of the error �0
G
of standard Gauss-Jacobi quadrature.

Let us introduce the unknown vector

y = [y(s1); : : : ; y(sn��); y(t1); � � � ; y(tn)]
t

approximating the exact solution vector

y
� = [y�(s1); � � � ; y�(sn��); y�(t1); � � � ; y�(tn)]

t
:

In other words, we denote by y� (x) the exact solution of the original equation (7),

together with (6), by y� the vector of dimension 2n � � of the function values of the

exact solution y� at the collocation points and the quadrature nodes. The vector y of

dimension 2n� � is the solution of the system (16) below.

After dropping the error term the discretized linear algebraic system of size (n� �+ �)�
(2n� �) can be written in block form as

~My =
h
D A

i
y = f(16)
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where f = [f(s1); : : : ; f(sn��);K0; :::;K��1]
t
. Here D is an (n� �+ �)�(n� �) matrix

with a special structure, where the only nonzero elements are

(D)j;j = dj ; for j = 1; : : : ; n� �:

The matrix A has instead the following entries

Aij =

8<
:

b(si)wj

�(tj�si)
i = 1; :::; n � �

wjP
(�;�)
k

(tj) i = n+ k + 1� �; k = 0; :::; � � 1

j = 1; 2; : : : ; n:

From the original equation it follows

~My
� + �G = f;(17)

where �G denotes the consistency error vector, �G =
h
�G;1; :::; �G;n��; �

0
G;0; :::; �

0
G;��1

it
.

Let In denote the n� n identity matrix, and let us de�ne the square matrices of sizes

n; and 2n� � respectively

N = diag

�
w
�1
j

�
; j = 1; :::; n; B = diag

�
In��; N

1

2

�
:

Let us introduce

M = ~MB =
h
D AN

1

2

i
:(18)

Rewrite the system (17)as follows

MB
�1
y
� + �G � f(19)

and the system (16) as

MB
�1
y = f:(20)

This is a rectangular, underdetermined system. On taking its Moore-Penrose

generalized inverse, we �nd a solution y satisfying (16) in the sense of minimizing�
B�1y

�t �
B�1y

�
y = BM

+
f:(21)

We can also de�ne y� as a solution of (19) in the sense of minimizing
�
B�1y�

�t �
B�1y�

�

y
� = BM

+
�
f � �G

�
:(22)

De�ne the error as e = y� � y. Subtracting (21) from (22)

e = �BM+
�G:

To determine convergence, we need estimates of the terms in the right hand side.

kek � kBkkM+kk�Gk:(23)
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4. Estimates and Main Result. For the consistency error, and for some dis-

cussion of the norm of the Moore-Penrose generalized inverse, we need the results of

[2]. Their quadrature however di�ers from (9). It is

Qn (y
�
; x) �

nX
i=1

Wiy
� (ti) =

nX
i=1

 
(�;�)
n (ti)�  

(�;�)
n (x)

P
(�;�)0
n (ti) (ti � x)

y
�(ti):(24)

It can be easily recast in a form closely related to Hunter's. Upon collocation at sj

Qn (y
�
; sj) =

nX
i=1

wiy
�(ti)

ti � sj
� cot (��) � (sj)

nX
i=1

P
(�;�)
n (sj)

P
(�;�)0
n (ti) (ti � sj)

y
� (ti) ;(25)

where in the �rst sum the weights are given by (12). The relationship between weights

is then

Wi =
wi

ti � sj
� cot (��) � (sj)

P
(�;�)
n (sj)

P
(�;�)0
n (ti) (ti � sj)

;

so that taking absolute values, summing and using lemma 1, for max (�; �) > � 1
2
,

nX
i=1

����� wi

ti � sj

����� �
nX
i=1

jWij+ jcot (��) � (sj)jnmax(�;�)+ 1

2(26)

and similarly for max (�; �) = � 1
2
. Lemma 3 of [2] shows that the weights Wi in the

quadrature behave like H +K log n. However the constants H and K depend on the

location of the singularity, i.e. in our situation, on the collocation points. We have the

following three di�erent cases. For the �rst weight, from (3.6) of [2]

jW1j �
B�

(1� sj)
�
�

2
+ 3

4

�
�

n
1 +O

�
n
�1
�o

; B
� = 2j���j+1

�
1� s

2
j

�
�

3

4

:(27)

For the remaining ones, up to j � 1, (3.7) gives

j�2X
k=1

jWkj �
B��

1� s2
j

�
�
fD� + (sj + 2) logng

n
1 +O

�
n
�1
�o

;(28)

where the constant D� is of the form

D
� = C1 + C2 log

�
1� s

2
j

�
:

In view of Theorem 8.9.1 of [13], we have

log
�
1� s

2
j

�
� � log (j�n) :
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Substitution into (28) gives

j�2X
k=1

jWkj �
B��

1� s2
j

�
�
fC1 + C3� log (j

�
n)g

n
1 +O

�
n
�1
�o

(29)

Finally for sj�1, from (3.8) of [2]

jWj�1j �
B��

1� s2
j

�
�

n
1 +O

�
n
�1
�o

:(30)

Similar results hold for the remaining nodes, by substituting � with �. On using again

theorem 8.9.1 of [13] on the previous estimates (27), (29) and (30), together with (26),

we have

Lemma 2. For the weights in Hunter's quadrature Q�

n (y
�; sj) we have the bounds����� w1

t1 � sj

����� � C4

�
j

n

�
�2� 3

2
n
1 +O

�
n
�1
�o

j�2X
i=1

����� wi

ti � sj

����� � C5

�
j

n

�
�2� 3

2

f1 +C6 log (n)g
n
1 +O

�
n
�1
�o

����� wj�1

tj�1 � sj

����� � C7

�
j

n

�
�2� 3

2
n
1 +O

�
n
�1
�o

and similary for the remaining weights.

Recall also formula (15.3.10) of [13] on the growth of the Christo�el numbers, i.e.

the weights wi relative to the nodes xi, in ordinary Gauss-Jacobi quadrature

wi �
2�+�+1

n
�

�
sin

�i

2

�2�+1 �
cos

�i

2

�2�+1

� �Cn�2(�+�+1)
; xi = cos �i;(31)

in view also of theorem 8.9.1 of [13]. It then follows

Lemma 3. For the matrix B, the following estimates hold

kBk1 = kBk1 = kBk2 � n
1��

:

Proof. Use (31) and the de�nitions of � and of the diagonal matrix B.

Lemma 4. We have also,

kM tk1 � nkM tk1 � n
9

2
+min(�;�;�)�� log n:

Proof. In fact, kDt
mk1 � C8n

min(�;�;�), in view of the H�older continuity of the

function � and of a, b. For N
t=2
m use (31) and for At

m use lemma 2, to get

kAt

mk1 � n
7

2 log n:
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Hence, the claim.

Lemma 5. The matrix � = ANAt with entries given by (32), (33) and (34) below,

has the following block structure, where D1 and D2 are diagonal matrices

� =

"
D1 Gt

G D2

#
:

Proof. Let us calculate �i;j . Let �i = � [b (si)]
�1
. Since b is a polynomial with

only �nitely many zeros, for n large enough we can assume b (si) 6= 0. There are three

di�erent cases to consider.

For 1 � i � n � �, n � � + 1 � j � n � � + �, letting m = j � (n� �+ 1) 2
f0; :::; � � 1g, we have, by using the de�nition of the quadrature weigths (12)

�i�i;j =
nX

k=1

1

tk � si

P
(�;�)
m (tk)

P
(�;�)0
n (tk)

1

�

Z 1

�1

P
(�;�)
n (t) � (t)

t� tk
dt

=
1

�

nX
k=1

P
(�;�)
m (tk)

P
(�;�)0
n (tk)

Z 1

�1

�
1

t� tk
+

1

tk � si

�
P

(�;�)
n (t) � (t)

t� si
dt

Observe that the interpolation formula is exact on polynomials of degree up to n,

so that

nX
k=1

P
(�;�)
m (tk)P

(�;�)
n (t)

P
(�;�)0
n (tk) (t� tk)

= P
(�;�)
m (t) ;

nX
k=1

P
(�;�)
m (tk)P

(�;�)
n (si)

P
(�;�)0
n (tk) (si � tk)

= P
(�;�)
m (si) :

Substituting into the former expressions we have

�i�i;j =
1

�

Z 1

�1

P
(�;�)
m (t) � (t)

(t� si)
dt�

1

�

P
(�;�)
m (si)

P
(�;�)
n (si)

Z 1

�1

P
(�;�)
n (t) � (t)

t� si
dt;

by using the second kind Jacobi function (8) and in view of the choice of the collocation

nodes, P
(��;��)
n�� (si) = 0, so that for i 6= j

�i;j �
�
G

t
�
i;m+1

�
2��b (si)

sin (��)
P

(��;��)
m�� (si) :(32)

where we have introduced the �� (n� �) matrix G.

For i; j � n� k, and i 6= j

nX
k=1

wk

tk � si

1

wk

wk

tk � sj
=

1

si � sj

nX
k=1

"
wk

tk � si
�

wk

tk � sj

#
= 0

in view of the previous computations, for the case m � 0. For i = j instead, we have,

[8]

�i;i =
b2 (si)

�

nX
k=1

wk

(tk � si)
2
=
b2 (si)

w�

i

� a
2
i ; i = 1; :::; n � �:(33)
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We now consider the case n��+1 � i; j � n��+�; once again letm = j�(n� �),

q = i � (n� �+ 1). Using the expression of the weights, the Lagrange interpolation

formula being exact on polynomials of degree m + q < n, and the exactness of the

quadrature over polynomials of degree \low enough",

�i;j =
nX

k=1

wkP
(�;�)
q (tk)P

(�;�)
m (tk)

=
1

�

nX
k=1

1

P
(�;�)0
n (tk)

Z 1

�1

P
(�;�)
n (t) � (t) dt

t� tk
P

(�;�)
q (tk)P

(�;�)
m (tk)

=
1

�

Z 1

�1
� (t)

nX
k=1

P
(�;�)
q (tk)P

(�;�)
m (tk)

P
(�;�)
n (t)

P
(�;�)0
n (tk) (t� tk)

dt

=
1

�

Z 1

�1
� (t)P (�;�)

q (t)P (�;�)
m (t) dt:

From the orthogonality of the Jacobi polynomials, then

�i;j = �ijkP (�;�)
q k2� � b

2
q; q = 0; :::; � � 1;(34)

where the last symbol denotes the weighted two norm.

Let us put �� = DDt + ANAt. We will need an estimate for ���1. Recall (7.32.2)

of [13], for which

kP (�;�)
n k2� =

2�+�+1

2n+ �+ � + 1

� (n+ �+ 1) � (n+ � + 1)

� (n+ 1) � (n+ �+ � + 1)
(35)

so that

kP (�;�)
n k�2� � n:(36)

Let us put D0 = diag (d1; ::; dn��) ; E � DDt = diag
�
D2

0; 0; :::; 0
�
, a square matrix

of size n � � + �, as is ��. Then �� = � + E. Now � is a symmetric matrix, with the

block form given in the lemma, where G is the �� (n� �) matrix with elements Gm;i,

given by (32) and the diagonal matrix are square, of sizes respectively n � � and �,

and whose elements are D2
1 = diag

�
a21; :::; a

2
n��

�
, see (33) and D2 = diag

�
b20; :::; b

2
��1

�
,

see (34). We will use a second decomposition of ��, �� = �� + ~E

�� =

"
D2

1 Gt

G D2

#
; ~E =

"
D2

0 O

O O

#
:

We need a preliminary result.

Lemma 6. For n large enough

�� � GD
�2
1 G

t =  diag

�
kP (��;��)

�� k2
��1 ; :::; kP (��;��)

��1�� k2
��1

�
; with  =

2�2�

sin2 (��)
:
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Proof. Observe that for l; r = 0; :::; � � 1

��l+1;r+1 =
n��X
k=1

2��

sin (��)
P

(��;��)

l��
(sk)w

�

k

2��

sin (��)
P

(��;��)

r���(n��)
(sk)

= 

n��X
k=1

w
�

kP
(��;��)
l��

(sk)P
(��;��)

r���(n��)
(sk) :

Using the de�nition of weights in the last expression we obtain

��l+1;r+1 = 

n��X
k=1

Z 1

�1
�
�1 (t)

P
(��;��)
n�� (t) dt

P
(��;��)0
n�� (sk) (t� sk)

P
(��;��)
l��

(sk)P
(��;��)

r���(n��)
(sk)

= 

Z 1

�1
�
�1 (t)

n��X
k=1

P
(��;��)
l��

(sk)P
(��;��)

r���(n��)
(sk)

P
(��;��)
n�� (t)

P
(��;��)0
n�� (sk) (t� sk)

dt

= 

Z 1

�1
�
�1 (t)P

(��;��)
l��

(t)P
(��;��)

r���(n��)
(t) dt;

the last step being exact if n > l+ r � �, since we interpolate a polynomial. It follows

��l+1;r+1 = �l;rkP
(��;��)
l��

k2
��1 :

By introducing the elementary matrix

R =

"
I O

�GD�2
1 I

#
;

we can diagonalize ��, since �� = RWRt, with W = diag
�
D2

1;D2 � ��
�
. Thus the

eigenvalues of �� are just the entries on the diagonal of W . Observe that for k =

0; :::; � � 1, by (35)

kP (��;��)
k��

k2
��1 =

1

sin2 (��)
kP (�;�)

k
k2�(37)

so that the eigenvalues of �� can be written down in an ordered fashion as follows


�kP (�;�)

0 k�< ::: <
�kP (�;�)

��1 k� < 0 <min
i
a
2
i < ::: <max

i
a
2
i ; 

� = 1�
1

sin2 (��)
:(38)

Since �� is symmetric, so is its inverse. Their 2-norms are then given by their respective

spectral radii. We are therefore interested in the eigenvalue of �� which is closest to

zero. In absence of more speci�c informations about the coe�cients a (x) and b (x)

of the original equation appearing in the terms ai and di, the above task seems to

be a di�cult one. We will then make some simplifying assumptions in the following

discussion.
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Fix now 0 < � < 1, and let �� � [�1 + �; 1� �]. First of all, we assume that

no si tends to a zero of b (x) as n �! 1. In view of (31) it then follows that a2
i
�

b (si)n
2(1��) � n2�2�. We can then say that as n increases all the ai increases as well;

hence it is reasonable to take the eigenvalue of �� closest to zero to be !� = �kP (�;�)
��1 k�;

alternatively, this certainly holds if

j!�j < min
i
a
2
i :(39)

By the corollary to Weyl's theorem, see [12] p. 193, and the fact that ~E is positive

semide�nite, it follows that the eigenvalue of �� closest to zero is bounded below by !�
and by a standard result, [12] p. 191, it is bounded above by !� + k ~Ek2. We would

like this quantity still to be negative, as this ensures that �� is invertible and that this

is still the eigenvalue of the matrix closest to zero. Hence together with (39) let us

assume that

!� + k ~Ek2 < 0:(40)

To understand how strong this assumption could be, let us remark that k ~Ek2 =

max d2
i
(si). Use then (13); since the coe�cients are continuous, the quantity in (13)

within the brackets is bounded above; however if � or � are negative the function �

blows up like n�4min(�;�), when si �! �1. To ensure then that (40) holds, in this case

we need then to restrict attention to si 2 ��. However condition (40) may be satis�ed

even in [�1; 1] if both �, � � 0. In this case (40) does not appear to be a very strict

requirement. We may even relax it a bit as follows���!� + k ~Ek2
��� � C9n

��
; > 0;

since more generally it involves the coe�cients of the original equation. With this

condition, in view of the above discussion, the following estimate holds

k���1k1 �
p
nk���1k2 � C10n

�+ 1

2 :(41)

We have then

Lemma 7. For the consistency error the following estimates hold

k�Gk1 � C11n
max(�;�)+ 1

2
+�
; for max (�; �) > �

1

2
;

k�Gk1 � C11n
� logn; for max (�; �) = �

1

2
:

In ��, the above estimates can be written as

k�Gk�;1 � C11 (�)n
max(�;�)+ 1

2
��
; for max (�; �) > �

1

2
;

k�Gk�;1 � C11 (�)n
�� log n; for max (�; �) = �

1

2
;
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with � \arbitrarily" high, where the notation emphasizes the fact that the bound itself

depends on �, and the norm is taken in ��.

Proof. Standard techniques estimate the Gaussian quadrature error in terms of the

Lebesgue constant times the best approximation error for the integrand, En (y
�). Use

lemma 1 and Jackson's theorem, which gives the best approximation error in terms of

the modulus of continuity of the integrand. Recalling section 2, the integrand function

y� (x) however is only inH� [�1; 1], see (5). This is not enough to ensure convergence for
the method, as it will be clear in the proof of the theorem below. To obtain convergence,

we are then forced once again to restrict the domain of interest to ��, since there y
� (x)

is analytic. We can then take y� 2 C� (��), with � \arbitrarily" high. We thus have

E�;n (y
�) � C11 (�)n

��
:

Theorem 8. The proposed method is convergent in ��, with rate given by

kek1 � C12 (�)n
13

2
+�+max(�;�)+min(�;�;�)�2��� log n

Proof. We can recast the error equation (23) in the following form and use lemmas

3, 4 and 7 and (41) together with the equivalence of norms to get the claim

kek1 � kBk1kM tk1k���1k1k�Gk�;1:

Remarks.

1. In practice, at least for the nodes closest to the endpoints, the numerical con-

vergence may very well be destroyed, since the error bound C12 (�) does actually

grow as � tends to 0.

2. For nonpositive index equations the analysis simpli�es considerably, since the

matrix of the system is just given by (18). Then k���1k1 = kD�1
3 k1 =

nmin(4�;4�;�), where � > 0 is the rate for which some si tend to a zero of b (x),

if they do it at all.

3. The result of the theorem shows that convergence can be attained only for the

\central" nodes of [�1; 1]; problems at the endpoints can in a certain sense be

expected in view of our choice of the quadrature weight �, see the discussion

after (2).
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