광양만 잡피밭에 서식하는 감성돔
\textit{(Acanthopagrus schlegeli)} 유어의 식성

허 성 희, 곽 석 남
부경대학교 해양학과 및 해양과학공동연구소

광양만 대도주변 잡피밭에서 채집된 감성돔 유어의 식성을 조사하였다. 감성돔(1~7cm SL)의 주요 먹이유물은 단각류(열새우류 및 카프렐라류), 개류 및 새우류였으며, 그 외 복족류, 갯지렁이류, 흉드라류, 주걱벌레부리류, 요각류, 등각류 등이 소량씩 위에이용을 중 발견되었다. 감성돔은 성장함에 따라 먹이유물의 조성이 점차 변하였다. 제주도 작은 감성돔은 열새우류, 카프렐라류, 갯지렁이류 및 복족류의 비율을 점차 낮추던 반면, 개류 및 새우류가 차지하는 비율은 증가하였다.

서 론

감성돔\textit{(Acanthopagrus schlegeli)}는 도미과\textit{(Sparidae)}에 속하는 내만성 어종으로 우리나라의 전 연안해역, 일본 쓰카이도 남부, 동중국해 및 대만 연안에서 분포한다(정, 1977). 이들은 수심이 약 50m 해조류가 밀생한 암초지대에 주로 서식하거나, 겨울철에는 깊은 곳으로 이동한다. 생존기는 3~7월 사이이며, 바다에 자갈, 돌, 모래 등으로 해저지형이 비교적 복잡한 곳에서 산란한다. 1년생의 경우 대부분 스컷이지만, 2~3년생은 알 수 만일이 된다. 3~4년생부터 알수가 분리되기 시작하며, 4~5년생이 되면 대부분 개체가 알컷으로 성전환되는 특성을 보인다(김 등, 1994).

어류의 식성 연구는 그 어류가 속해 있는 생태계의 기능적인 면을 이해하기 위한 기초 자료를 제공한다. 본 연구에서는 현재 우리나라 남해안에 밀생되어 있는 잡피발의 생태계에 대한 종합적인 연구의 일환으로서 광양만 잡피밭에서 많이 출현하고 있는 어종 중 하나인 감성돔의 식성을 분석하였다.

재료 및 방법

본 연구에 사용된 감성돔의 시료는 1994년 1월부터 1994년 12월까지 광양만 대도 주변 잡피밭(Fig. 1)에서 매월 소형 trawl을 이용하여 채집하였다.

시료 채집에 사용된 어류의 크기는 길이가 5cm 였으며, 망목의 크기는 넓개그물에서 1.9cm, 긴자루로 갈수록 찌층 망목의 크기가 감소하고 끝자루에서는 1cm였다. 대도 주변해역의 환경 특성은 허 등(1998)에 의해 기술되었다.

채집된 어류는 10% 중성 포르말린으로 고정하였으며, 실험실에서 표준체장\textit{(standard length: SL)}를 기준으로 10mm 간격의 크기군\textit{(size class)}로 나누어 봄, 어체에서 위를 분리하였다. 위내용물은 해부학적은을 이용하여 먹이 종류별로 구분하였다.

- 168 -
포양만 점피벌에 서식하는 갯앱주(Acanthopagrus schlegeli) 유거리식

한편, 아화면에서 재배한 공생물은 가능한 대로 동정하였으나, 그의 아화물은 대분류하였다. 아화물은 종류별로 개체수를 계수하였으며, 크기는 mm 단위까지 측정하였다. 그리고 각 아화 종류별로 80°C의 건조기에서 24시간 건조시간 뒤, 전자식 저울을 이용하여 건조중량을 측정하였다.

위생물의 분석 결과는 각 아화물에 대한 출현빈도(frequency of occurrence, 아화물의 개체수 및 건조중량비)로 나타내었다.

설비된 아화물의 상대중요성지수(index of relative importance, IRI)는 Pinkas et al. (1971)의 식을 이용하여 구하였다.

\[
IRI = (N + W) \cdot F
\]

여기서,
- N: 아화물 총 개체수에 대한 백분율
- W: 위생물 총 건조중량에 대한 백분율
- F: 각 아화물의 출현빈도

또한 각 아화물의 상대중요성지수를 백분율로 산산하여 상대중요성지수비(% IRI)를 구하였다.

각 아화물에 대한 선택성은 Ivlev(1961)가 제안한 선택도지수(electivity index)를 이용하여 구하였다.

\[
E = \frac{R_i - P_i}{R_i + P_i}
\]

여기서,
- R_i: 위생물 중에서 i종의 개체수비
- P_i: 환경에 출현하는 i종의 개체수비

결과 및 고찰

감성물은 본 조사해역인 포양만 대도주변 점피밭에서 많이 출현한 아화 종의 하나이다(허·박, 1997d). 조사기간 동안 채집된 감성물은 1.3~6.5cm의 제장 분포 범위를 보였다(Fig. 2).

Fig. 1. Location of the study area in Kwangyang Bay, Korea.

Fig. 2. Monthly variation in size distributions of Acanthopagrus schlegeli in 1994.
조사기간 동안 12월에서 6월까지는 감성돌이 전히 채집되지 않았으나, 7월부터 채장 1~3cm의 소형 개체들이 다량 채집되었다. 8월에는 채집량이 더욱 증가하여 조사기간 중 가장 많은 127개체를 나타내었다. 9월에는 채집량이 크게 감소하였는데, 이 시기에는 3~6cm 크기 개체들이 주로 채집되었다. 10~11월에는 채집량이 더욱 감소하여 4cm 이상되는 개체들이 아주 소량씩 채집되었을 뿐이다. 따라서 감성돌은 7월경에 채장 3cm 이하의 유어들이 잘피밭에 다량 유입되었으며, 잘피밭에서는 2~3달 정도 머물 뒤, 채장 6cm 이상이 되면 대부분의 개체들이 주변 해역으로 이동하는 것을 추정한다.

1. 위 내용물 조성

위 내용물 분석에 사용된 감성돌은 총 129개체

<table>
<thead>
<tr>
<th>Food organisms</th>
<th>Occurrence(%)</th>
<th>Number(%)</th>
<th>Dry weight(%)</th>
<th>IRI</th>
<th>IRI(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammaridea</td>
<td>50.8</td>
<td>33.7</td>
<td>31.9</td>
<td>3332.5</td>
<td>42.1</td>
</tr>
<tr>
<td>Caprellidea</td>
<td>45.2</td>
<td>33.1</td>
<td>26.5</td>
<td>2993.9</td>
<td>34.0</td>
</tr>
<tr>
<td>Caprella kroyeri</td>
<td>31.5</td>
<td>16.4</td>
<td>11.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprella tsugarensis</td>
<td>22.6</td>
<td>9.5</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprella scabra</td>
<td>12.9</td>
<td>4.6</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprella acanthogaster</td>
<td>10.5</td>
<td>2.6</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachyura</td>
<td>37.1</td>
<td>6.9</td>
<td>15.2</td>
<td>819.9</td>
<td>10.4</td>
</tr>
<tr>
<td>Hemigrapsus penicillatus</td>
<td>16.9</td>
<td>2.1</td>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charbdia japonica</td>
<td>8.9</td>
<td>1.3</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pugettia quadridens</td>
<td>8.1</td>
<td>1.1</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crab larvae</td>
<td>4.8</td>
<td>2.4</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caridea</td>
<td>33.1</td>
<td>4.3</td>
<td>10.5</td>
<td>489.9</td>
<td>6.2</td>
</tr>
<tr>
<td>Alpheus brevicristatus</td>
<td>16.1</td>
<td>2.1</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crangon affinis</td>
<td>9.7</td>
<td>1.3</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptacarpus rectirostris</td>
<td>6.5</td>
<td>0.9</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pagurus dubius</td>
<td>1.6</td>
<td>0.2</td>
<td>0.8</td>
<td>0.1</td>
<td>+</td>
</tr>
<tr>
<td>Tanaidacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanais cavolinii</td>
<td>14.5</td>
<td>3.2</td>
<td>1.2</td>
<td>63.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Mysidacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td>0.3</td>
<td>0.1</td>
<td>0.6</td>
<td>+</td>
</tr>
<tr>
<td>Copepoda</td>
<td>6.5</td>
<td>1.1</td>
<td>0.1</td>
<td>7.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Centropages abdominalis</td>
<td>3.2</td>
<td>0.6</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calanus sinicus</td>
<td>2.4</td>
<td>0.3</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acartia sp.</td>
<td>1.6</td>
<td>0.2</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymodoce japonica</td>
<td>2.4</td>
<td>0.3</td>
<td>0.1</td>
<td>1.5</td>
<td>+</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>16.9</td>
<td>4.2</td>
<td>6.4</td>
<td>179.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Hydrozoa</td>
<td>10.5</td>
<td>7.1</td>
<td>1.4</td>
<td>89.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Polychaeta</td>
<td>17.7</td>
<td>5.4</td>
<td>6.2</td>
<td>205.3</td>
<td>2.6</td>
</tr>
<tr>
<td>Algae</td>
<td>12.1</td>
<td>2.3</td>
<td>0.2</td>
<td>30.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Seagrass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zostera marina</td>
<td>1.6</td>
<td>0.8</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

+ : less than 0.1%
것으로, 이 중 위 속에 먹이가 전혀 없었던 개체는 5개체로서, 2.3%를 차지하였다. 먹이를 섭취한 124개체의 위 내용물을 분석한 결과는 Table 1과 같다.

감성돌의 가장 중요한 먹이생물은 단각류 (Amphipoda)에 속하는 엽세우류 (Gammaridea)와 카프렐라류 (Caprellidea)였다. 엽세우류는 50.8%의 출현빈도를 보였으며, 총 먹이생물 개체수의 33.7%와 위 내용물 건조중량의 31.9%를 차지하였 다. 상대중요성지수는 42.1%의 높은 값을 보였다. 엽세우류 중 많이 잡혀 먹힌 종은 Eriothionius pugnax였다. 카프렐라류는 45.2%의 출현빈도를 보았으며, 총 먹이생물 개체수의 33.1%와 위내용물 건조중량의 26.5%를 차지하였다. 상대중요성지수는 34.0%였다. 카프렐라류 중 많이 잡혀 먹힌 종은 Caprella kroeyeri, C. tsgarensis, C. scaura 였다.

그 다음으로 중요한 먹이생물은 계류 (Brachyura) 및 새우류 (Caridea)였다. 계류는 37.1%의 출현빈도를 보였으며, 총 먹이생물 개체수의 6.9%와 위내용물 건조중량의 15.2%를 차지하였다. 상대중요성지수는 10.4%였다. 계류 중 많이 잡혀 먹힌 종은 풍계 (Hemigrapsus penicillatus), 민꽃게 (Charybdis japonica) 등이었다. 새우류는 33.1%의 출현빈도를 보였으며, 총 먹이생물 개체수의 4.3%와 위내용물 건조중량의 10.5%를 차지하였다. 상대중요성지수는 6.2%였다. 새우류 중 많 이 잡혀 먹힌 종은 막총새우 (Alpheus brevicristatus)와 자주새우 (Crangon affinis)였다.

한편 부축류 (Gastropoda)는 16.9%의 출현빈도를 보였으나, 위내용물 건조중량 중 차지하는 비율은 6.4%에 불과하였다. 부축류 중 주로 잡혀 먹힌 종류는 나세류 (Nudibranchia)였다. 갯지렁이류 (Polychaeta)도 17.7%의 출현빈도를 보였으나, 위내용물 건조중량 중 차지하는 비율은 6.2%에 불과하였다. 그 외 하드라류 (Hydrozoa), 주걱벌레부리류 (Tanaidacea), 해조류 (Algae) 및 산파 조각 등도 위내용물 속에서 발견되었으나, 그 양은 많지 않았다. 해조류와 갯파의 조각은 먹이생물을 섭취하는 과정에서 우연히 함께 섭취된 것으로 생각되며, 먹이로서 가치는 별로 없는 것으로 판단된다.

따라서 잠파에서 채집된 감성돌 (1~7cm SL)은 단각류 (엽세우류와 카프렐라류), 계류 및 새우류 중의 감각류를 주로 먹는 육식성 어종임을 알 수 있다.

2. 성장에 따른 먹이 변화

체장 1~3cm의 소형 감성돌은 엽세우류를 특히 선호하였는데, 엽세우류가 전체 위내용물 건조중량 중 차지하는 비율이 약 50%에 달하였다 (Fig. 3). 그 다음으로 카프렐라류 (19.4~21.2%), 갯지렁 이류 (11.3~16.1%), 부축류 (11.1~15.3%) 등이 주요 먹이생물이었다. 감성돌의 체장이 증가하면서 엽세우류, 갯지렁이류 및 부축류의 점유율은 점차 감소한 반면, 카프렐라류, 계류 및 새우류 점유율은 점차 증가하였다. 그 결과 체장 4~5cm에서는 계류 (25.2%), 카프렐라류 (24.3%), 엽세우류 (22.1%) 및 새우류 (15.7%)가 고르게 먹혔다. 5~7cm에서는 엽세우류의 점유율이 더욱 감소하여 17.1~17.6%에 불과하였으며, 카프렐라류, 계류, 새우류의 점유율은 더욱 증가하여 카프렐라류는 29.1~29.7%, 계류는 28.1~30.5%, 새우류는

17.2～20.3%에 달하였다.

본 참패발에서는 7cm 이상되는 갑상돌이 채집되지 않았으나, 본 조사해역과 인접한 참패발에서 채집된 체장 7～12cm의 갑상돌의 경우, 계류와 세우류가 위층을 진조층량의 70% 정도를 차지하고 있었으며, 어류는 약 10%의 점유율을 보였다(비표표 자료). 이는 7cm 이상 체장에서는 카프렐라류의 점유율이 크게 낮아지는 반면, 세우류 및 계류의 점유율은 더욱 증가하며, 또한 갑각류 외에도 어류의 질이가 시작됨을 의미한다.

갑상돌의 식성에 관한 보고를 국내외적으로 찾기 어려웠기 때문에 본 연구결과와 기존의 연구결과를 비교하기 어려웠다.

갑상돌과 유사 어종의 식성을 비교해 보면, 미국 북서 Florida의 해조지에 서식하는 Diplo dus holbrooki(갑상돌과 같은 조문과에 속함)는 유아기에 옐세우류와 요각류를 주로 먹었으나, 성장함에 따라 계류, 세우류 및 어류로 먹이 전환을 일으키고 (Carr and Adams, 1973), 본 조사해역의 갑상돌과 유사한 양상을 보였다. 호주의 New South Wales 연안해역에 밀생한 Posidonia australis 해조지에서 서식하는 Acantho pagrus australis는 유아기에 갯지렁이류와 허드라류를 주로 먹었으나, 체장이 증가함에 따라 계류 및 세우류의 점유율이 증가하였다(Burchmore et al., 1984). 남아공국 Clayton’s Rock의 조간대에서 서식하는 Diplo dus sargus는 유어기에 요각류와 따개비류(Cirripedia)의 유생을 주로 먹었으나, 체장이 증가함에 따라 옐세우류, 카프렐라류, 북축류로 먹이 전환이 일어났으며, Diplo dus cervinus는 유어기 요각류를 주로 먹었으나, 성장하면서 옐세우류, 카프렐라류 및 갯지렁이류로 먹이 전환이 일어났다(Christensen, 1978).

이상의 결과로 볼 때, 갑상돌 및 유사 어종들은 유어기부터 성어로 이르기까지 각 어종이 먹는 먹이성물의 종류가 다소 다르게 나타났으나, 공통적으로 성장에 따른 먹이성물의 전환의 추세가 일어났다. 이와 같이 어류가 성장하면서 먹이성물의 종류가 바뀌는 현상은 본 참패발에서 우정하였던 많은 어종에서도 흔히 나타나는 현상이며, 1997a,b,c, 1998a,b,c,d,e,f,g,h))으로, 성장에 따른 유영능력의 향상과 일 크기의 증대로 인해 보다 큰 먹이성물의 질이가 가능해진 결과이다.

각 먹이성물에 대한 선택성지수를 보면(그림 4), 옐세우류와 카프렐라류는 조사된 모든 크기군에서 양의 수치를 보여 가장 적극적으로 선택된 먹이성물이었다. 계류와 세우류는 작은 체장에서는 음의 수치였으나, 체장 3cm 이상부터는 양의 수치를 보였으며, 그 수치는 체장이 증가함수록 높아졌다. 갯지렁이류와 북축류는 작은 체장에서는 양의 수치였으나, 체장 4cm 이상부터는 음의 수치를 나타내었다. 그 외 요각류, 곤충류, 동각류, 어류 등은 모든 크기군에서 음의 수치를 나타내어 먹이성물로서 거의 선택되지 않았다.

3. 계절에 따른 먹이 변화

본 조사해역에서 갑상돌은 Fig. 2에서 보듯이 1년 중 7월부터 11월까지 5개월 동안만 체적되었던 도합으로 10월 11월에는 체적 개체수가 각각 2개체
이상의 결과를 종합해 보면, 감성돔 유어들은 장파가 가장 번성하는 7월에 장파에 다량 유입되어 포식자들로부터 보호받으며 약 3~4개월간 장파에 머무르는 것으로 나타났다. 이 기간 동안 장파에 풍부한 열새우류를 주 먹이성품으로 하여 매우 빠른 속도로 성장하여, 장파만의 성장장에서 중요한 역할을 하고 있음을 의미한다. 장파에 많이 출현하였던 북미(히라라주, 1998b), 농어(히라라주, 1998e), 북미(히라라주, 1998g) 등도 감성돔과 매우 유사한 식성을 보였다. 따라서 이들 연식스케일이 먹이 경쟁 관계가 형성될 가능성이 있으나, 이를 밝혀하기 위해서는 좀 더 상세한 연구가 필요하다고 생각된다.

인용문헌
허성희・박석남. 1997b. 함양만 장파발에 서식하는 실고기(Syngnathus schlegeli)의 식성. 한수지 30(5): 896~902.

허성희·곽석남. 1998a. 가시망둑(Pseudoblennius cotoides)의 식성. 한수지 31(1): 37~44.

허성희·곽석남. 1998b. 광양만 잔피밭에 서식하는 불낙(Sebastes inermis)의 식성. 한수지 31(2): 168~175.

허성희·곽석남. 1998c. 광양만 잔피밭에 서식하는 낡개망둑(Favonigobius gymnauchen)의 식성. 한수지 31(3): 372~379.

허성희·곽석남. 1998e. 광양만 잔피밭에 서식하는 농어(Lateolabrax japonica)의 식성. 어업기술 34(2): 191~199.

허성희·곽석남. 1998f. 광양만 잔피밭에 서식하는 봉장어(Conger myriaster)의 식성. 한수지 31(5): 665~672.

허성희·곽석남. 1998g. 광양만 잔피밭에 서식하는 북성(Takifugu niphobes) 유피의 식성. 한수지 31(6): 806~812.

허성희·곽석남. 1998h. 광양만 잔피밭에 서식하는 문절망둑(Acanthogobius flavimanus)의 식성. 한수지 32(1): (인쇄중).

Feeding habits of juvenile *Acanthopagrus schlegeli* in the eelgrass (*Zostera marina*) bed in Kwangyang Bay

Sung – Hoi Huh and Seok Nam Kwak

Department of Oceanography and Korea Inter – University Institute of Ocean Science,
Pukyong National University, Pusan 608 – 737, Korea

Feeding habits of juvenile *Acanthopagrus schlegeli* collected from the eelgrass bed in Kwangyang Bay were studied. *A. schlegeli* (1~7cm SL) was a carnivore which consumed mainly amphipods (gammarid and caprellid amphipods), crabs and shrimps. Its diets included small quantities of gastropods, polychaetes, hydroids, tanaids, copepods and isopods. *A. schlegeli* showed ontogenetic changes in feeding habits. Small individuals preyed mainly on gammarid amphipods, gastropods and polychaetes. However, crabs and shrimps were heavily selected with increasing fish size.

Key words: *Acanthopagrus schlegeli*, feeding habits, eelgrass bed, stomach contents amphipods, crabs, shrimps