Effect of Polyurethane on Fracture Toughness in CTBN/PU/Epoxy

CTBN/PU/Epoxy의 파괴인성에서 폴리우레탄의 영향

  • Kim, Jong Seok (School of Chemical Engineering and Technology, Chonbuk National University) ;
  • Hong, Suk Pyo (School of Chemical Engineering and Technology, Chonbuk National University)
  • 김종석 (전북대학교 화학공학부) ;
  • 홍석표 (전북대학교 화학공학부)
  • Received : 1997.08.19
  • Accepted : 1998.02.23
  • Published : 1998.04.10

Abstract

Epoxy adduct carboxyl terminated butadiene acrylonitrile(CTBN) was prepared by blending of CTBN and epoxy resin. CTBN/PU/epoxy was prepared from polyurethane(PU), epoxy resin, and CTBN. The CTBN/PU/epoxy using 5 wt% of CTBN content showed shifting damping peak as PU content increased. It suggested that CTBN/PU/epoxy had good compatibility for all composition at 5 wt% of CTBN content. But miscibility of CTBN/PU/epoxy decreased with the increase of the CTBN content. PU content for maximum flexural properties of CTBN/PU/epoxy was 10 wt%, but decreased with the increase of the PU content. The fracture toughness of CTBN/epoxy was improved by addition of the PU. Fracture surfaces of CTBN/PU/epoxy showed the shear deformation and generation of stress whitening which is associated with the cavitation. Cavitation in the CTBN and shear defomation in the PU modified epoxy matrix are the toughening mechanisms for CTBN/PU/epoxy.

에폭시 adduct carboxyl terminated butadiene acrylonitrile(CTBN)은 CTBN과 에폭시수지를 블렌딩하여 제조하였다. CTBN과 폴리우레탄(PU) 및 에폭시수지로 CTBN/PU/epoxy를 제조하였다. CTBN이 5 wt%에서 CTBN/PU/Epoxy는 PU의 함량이 증가할 수록 damping 피크가 이동하였다. PU의 함량이 증가할수록 상용성이 증가함을 의미한다. 그러나 CTBN의 함량이 증가함에 따라 상용성은 감소하였다. CTBN/PU/epoxy에서는 PU의 함량이 10wt%에서 최대 굴곡값을 나타냈으나, PU 함량이 증가할수록 감소하였다. CTBN/epoxy에서 PU를 첨가함에 따라 파괴인성은 증가하였다. 파괴단면에서 전단변형과 공동화에 의한 응력백화현상을 보였다. CTBN의 공동화와 PU를 도입한 에폭시 매트릭스의 전단변형이 CTBN/PU/epoxy의 강인화기구이다.

Keywords

References

  1. J. Polym. Sci., Polym. Phys., Ed. v.31 H. J. Sue;E. I. Garcia;N. A. Opchard
  2. Polym. Eng. Sci. v.36 D. S. Kim;K. Cho;J. K. Kim;C. E. Park
  3. Polym. Eng. Sci. v.36 H. R. Azimi;R. A. Pearson;R. W. Hertzberg
  4. J. Mater. Sci. v.32 M. Kimoto;K. Mizutani
  5. J. Mater. Sci. letter. v.6 A. J. Kinloch;D. L. Hunston
  6. J. Mater. Sci. v.21 A. F. Yee;R. A. Pearson
  7. J. Mater. Sci. v.24 R. A. Pearson;A. F. Yee
  8. Polym. Comp. v.8 G. Levita;A. Marchetti;A. Lazzeri;V. Frosini
  9. J. Mater. Sci. v.27 T. K Chen;Y. H. Jan
  10. Polym. Mater. Sci. Eng. v.65 X. Han;Y. Wang;S. Pan;Q. Zheng
  11. Polym. Mater. Sci. Eng. v.60 L. H. Sperling;C. E. Carraher
  12. J. Am. Oil Chem. Soc. v.51 F. C. Naughton
  13. Macromolecules v.12 N. Devia;J. A. Manson;L. H. Sperling
  14. J. Am. Oil Chem. Soc. v.51 F. C. Naughton
  15. J. Appl. Polym. Sci. v.43 J. G. Homan;X. H. Yu;T. J. Connor;S. L. Cooper
  16. Polymer v.33 T. I. Kadurina;V. A. Prokopenko;S. I. Omelshenko
  17. Poym. Mater. Sci. Eng. v.63 D. Li;X. Li;A. F. Yee
  18. Advances in Chemistry v.233 Toughnened Plastics Ⅰ: science and engineering Y. Huang;D. L. Hunston;A. J. Kinloch;C. K. Riew;C. K. Riew(ed.);A. J. Kinloch(ed.)
  19. J. Appl. Polym. Sci. v.42 D. Verchere;J. P. Pascault;H. Sautereau;S. M. Moschirar;C. C. Riccardi;R. J. J. Williams