AN ELEMENTARY WAY OF ADDING TWO CANTOR SETS

Keum, Jong Hae
Department of Mathematics, Konkuk University, Mojin-dong, Gwangjin-gu 93-1, Seoul 143-701, Korea; Email: jhkeum@kkucc.konkuk.ac.kr

Let C be the Cantor set. It is well known that $C+C=\{x+y: x \in C, y \in C\}=[0,2]$ and $C-C=[-1,1]$.
We introduce a fairly elementary method for the proof which also works even for generalized Cantor sets.

1. Adding two Cantor sets

Let C be the Cantor set. Then we have $C+C=[0,2]$ and $C-C=[-1,1]$. A well-known proof for this uses ternary expression(see e.g. Rudin(1976), p. 81). More precisely, this can be seen by adding and subtracting members of C in base 3 recalling that C is the set of all real numbers in $[0,1]$ with only 0 's and 2 's in their ternary representations. Here we introduce a fairly elementary method which also works even for generalized Cantor sets.

Let I_{n} be the set appearing in the construction of the Cantor set C, that is,

$$
\begin{aligned}
& I_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right], \\
& I_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right], \\
& \cdots, \text { etc. }
\end{aligned}
$$

Then $C=\underset{n=1}{\longrightarrow} \cap I_{n}$.
Consider the function $f(x, y)=x+y$, which is the projection of the plane onto the real axis along the line $x+y=0$ (Figure 1).

Figure 1. Projection along $x+y=0$

We see from Figure 1 that $f\left(I_{1} \times I_{1}\right)=[0,2]$ and, by induction, that

$$
f\left(I_{n} \times I_{n}\right)=[0,2] \text { for } n=1,2,3, \cdots
$$

Now we have

$$
\begin{aligned}
{[0,2] \supseteq C+C } & =f(C \times C) \\
& =f\left(\underset{n=1}{\longrightarrow} \xrightarrow{\infty} \cap I_{n} \times \underset{n=1}{\rightarrow} \xrightarrow{\infty} \cap I_{n}\right) \\
& \supseteq f\left(\underset{n=1}{\rightarrow} \xrightarrow{\infty} \cap\left(I_{n} \times I_{n}\right)\right) \\
& =\underset{n=1}{\longrightarrow} \cap f\left(I_{n} \times I_{n}\right) \\
& =\underset{n=1}{\longrightarrow} \cap[0,2]=[0,2] .
\end{aligned}
$$

Therefore $C+C=[0,2]$.
Similarly, considering the function $g(x, y)=x-y$, which is the projection of the plane along the line $x-y=0$ (Figure 2), we have $C-C=[-1,1]$.

Figure 2. Projection along $x-y=0$

2. Adding two generalized Cantor sets

The above method can be applied to the case of generalized Cantor sets. For $0<\alpha<1$, let C_{α} be the generalized Cantor set. (The deleted middle interval has length α times the length of the interval, e.g. $C_{\frac{1}{3}}=C$.) Note that there is no inclusion between C_{α} and C_{β} if $\alpha \neq \beta$.

Proposition.

(i) $C_{\alpha}+C_{\alpha}=[0,2]$ if $0<\alpha \leq \frac{1}{3}$
(ii) $C_{\alpha}+C_{\alpha}=\underset{n=1}{\longrightarrow} \cap J_{n} \quad$ if $\quad \frac{1}{3}<\alpha<1$, where

$$
J_{1}=[0,1-\alpha] \cup\left[\frac{1+\alpha}{2}, \frac{3-\alpha}{2}\right] \cup[1+\alpha, 2]
$$

and, for $n \geq 2, J_{n}$ is the set obtained by deleting two middle sets from each interval of J_{n-1} (Figure 3).

Figure 3. $[0,1-\alpha] \cup\left[\frac{1+\alpha}{2}, \frac{3-\alpha}{2}\right] \cup[1+\alpha, 2]$

Remark 1. Similarly, we see that for any α the set $C_{\alpha}-C_{\alpha}$ is the mirror image of $C_{\alpha}+C_{\alpha}$ with respect to the point $x=\frac{1}{2}$.

Remark 2. As α passes by $\frac{1}{3}$, the measure of the set $C_{\alpha} \pm C_{\alpha}$ drops from 2 to 0 . But the fractal dimension (see e.g. Crownover(1995), p. 7)

$$
f \operatorname{dim}\left(C_{\alpha} \pm C_{\alpha}\right)= \begin{cases}1, & 0<\alpha \leq \frac{1}{3} \\ \frac{\ln 3}{\ln 2-\ln (1-\alpha)}, & \frac{1}{3} \leq \alpha<1\end{cases}
$$

is, as expected, a continuous function of α.

References

Crownover, R. M. (1995): Introduction to Fractals and Chaos, Jones and Bartlett Publisher. Rudin, W. (1976): Principles of Mathematical Analysis(3rd ed.), New York: McGraw-Hill.

