Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education Vol. 2, No. 1 July 1998, 1–4

AN ELEMENTARY WAY OF ADDING TWO CANTOR SETS

KEUM, JONG HAE

Department of Mathematics, Konkuk University, Mojin-dong, Gwangjin-gu 93-1, Seoul 143-701, Korea; Email: jhkeum@kkucc.konkuk.ac.kr

Let C be the Cantor set. It is well known that $C+C = \{x+y : x \in C, y \in C\} = [0, 2]$ and C - C = [-1, 1].

We introduce a fairly elementary method for the proof which also works even for generalized Cantor sets.

1. Adding two Cantor sets

Let C be the Cantor set. Then we have C + C = [0, 2] and C - C = [-1, 1]. A well-known proof for this uses ternary expression(see e.g. Rudin(1976), p. 81). More precisely, this can be seen by adding and subtracting members of C in base 3 recalling that C is the set of all real numbers in [0, 1] with only 0's and 2's in their ternary representations. Here we introduce a fairly elementary method which also works even for generalized Cantor sets.

Let I_n be the set appearing in the construction of the Cantor set C, that is,

$$I_1 = \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix} \cup \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix},$$

$$I_2 = \begin{bmatrix} 0, \frac{1}{9} \end{bmatrix} \cup \begin{bmatrix} \frac{2}{9}, \frac{1}{3} \end{bmatrix} \cup \begin{bmatrix} \frac{2}{3}, \frac{7}{9} \end{bmatrix} \cup \begin{bmatrix} \frac{8}{9}, 1 \end{bmatrix},$$

..., etc.

Then $C = \underset{n=1}{\rightarrow} \overset{\infty}{\rightarrow} \cap I_n$.

Consider the function f(x, y) = x + y, which is the projection of the plane onto the real axis along the line x + y = 0 (Figure 1).

KEUM, JONG HAE

Figure 1. Projection along x + y = 0

We see from Figure 1 that $f(I_1 \times I_1) = [0, 2]$ and, by induction, that

$$f(I_n \times I_n) = [0, 2]$$
 for $n = 1, 2, 3, \cdots$.

Now we have

$$[0, 2] \supseteq C + C = f(C \times C)$$

= $f\left(\xrightarrow{\rightarrow} 0 \cap I_n \times \xrightarrow{\rightarrow} 0 \cap I_n \right)$
 $\supseteq f\left(\xrightarrow{\rightarrow} 0 \cap (I_n \times I_n) \right)$
= $\xrightarrow{\rightarrow} 0 \cap f(I_n \times I_n)$
= $\xrightarrow{\rightarrow} 0 \cap [0, 2] = [0, 2].$

Therefore C + C = [0, 2].

Similarly, considering the function g(x, y) = x - y, which is the projection of the plane along the line x - y = 0 (Figure 2), we have C - C = [-1, 1].

Figure 2. Projection along x - y = 0

2. Adding two generalized Cantor sets

The above method can be applied to the case of generalized Cantor sets. For $0 < \alpha < 1$, let C_{α} be the generalized Cantor set. (The deleted middle interval has length α times the length of the interval, e.g. $C_{\frac{1}{3}} = C$.) Note that there is no inclusion between C_{α} and C_{β} if $\alpha \neq \beta$.

Proposition.

(i)
$$C_{\alpha} + C_{\alpha} = [0, 2]$$
 if $0 < \alpha \le \frac{1}{3}$
(ii) $C_{\alpha} + C_{\alpha} = \xrightarrow[n=1]{} \xrightarrow{\infty} \cap J_n$ if $\frac{1}{3} < \alpha < 1$, where
 $J_1 = [0, 1 - \alpha] \cup \left[\frac{1 + \alpha}{2}, \frac{3 - \alpha}{2}\right] \cup [1 + \alpha, 2]$

and, for $n \ge 2$, J_n is the set obtained by deleting two middle sets from each interval of J_{n-1} (Figure 3).

KEUM, JONG HAE

Figure 3. $[0, 1 - \alpha] \cup \left[\frac{1+\alpha}{2}, \frac{3-\alpha}{2}\right] \cup [1 + \alpha, 2]$

Remark 1. Similarly, we see that for any α the set $C_{\alpha} - C_{\alpha}$ is the mirror image of $C_{\alpha} + C_{\alpha}$ with respect to the point $x = \frac{1}{2}$.

Remark 2. As α passes by $\frac{1}{3}$, the measure of the set $C_{\alpha} \pm C_{\alpha}$ drops from 2 to 0. But the fractal dimension (see e.g. Crownover(1995), p. 7)

$$f \dim(C_{\alpha} \pm C_{\alpha}) = \begin{cases} 1, & 0 < \alpha \le \frac{1}{3} \\ \frac{\ln 3}{\ln 2 - \ln(1 - \alpha)}, & \frac{1}{3} \le \alpha < 1 \end{cases}$$

is, as expected, a continuous function of α .

References

Crownover, R. M. (1995): Introduction to Fractals and Chaos, Jones and Bartlett Publisher. Rudin, W. (1976): Principles of Mathematical Analysis(3rd ed.), New York: McGraw-Hill.