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FUZZY r-SEMICONTINUOUS,
r-SEMIOPEN AND r-SEMICLOSED MAPS

Seok Jong Lee, Seung On Lee and Eun Pyo Lee

Abstract. In this paper, we investigate some conditions which are

equivalent to fuzzy r-homeomorphisms and give some characterizing
theorems for fuzzy r-semicontinuous, r-semiopen and r-semiclosed

maps.

1. Introduction

Chang [2] introduced fuzzy topological spaces and some authors
[4, 5, 7] introduced new definitions of fuzzy topology as a generaliza-
tion of Chang’s fuzzy topology. We introduced fuzzy r-semiopen sets
and fuzzy r-semicontinuous maps which are generalization of fuzzy
semiopen sets and fuzzy semicontinuous maps in Chang’s fuzzy topol-
ogy, respectively [6]. In this paper, we investigate some conditions
which are equivalent to fuzzy r-homeomorphisms and give some char-
acterizing theorems for fuzzy r-semicontinuous, r-semiopen and r-semi-
closed maps.

2. Preliminaries

In this paper, I denotes the unit interval [0, 1] of the real line and
I0 = (0, 1]. A member µ of IX is called a fuzzy set of X. For any µ ∈ IX ,
µc denotes the complement 1−µ. By 0̃ and 1̃ we denote constant maps
on X with value 0 and 1, respectively. All other notations are standard
notations of fuzzy set theory.
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Definition 2.1. [3, 6] Let (X, T ) be a fuzzy topological space. For
each r ∈ I0 and for each µ ∈ IX , the fuzzy r-closure is defined by

cl(µ, r) =
∧
{ρ ∈ IX | µ ≤ ρ,FT (ρ) ≥ r}

and the fuzzy r-interior is defined by

int(µ, r) =
∨
{ρ ∈ IX | µ ≥ ρ, T (ρ) ≥ r}.

¿From now on, for r ∈ I0 we will call µ a fuzzy r-open set of X if
T (µ) ≥ r, µ a fuzzy r-closed set of X if F(µ) ≥ r. Note that µ is fuzzy
r-closed if and only if µ = cl(µ, r) and µ is fuzzy r-open if and only if
µ = int(µ, r).

Definition 2.2. [6] Let µ be a fuzzy set of a fuzzy topological space
(X, T ) and r ∈ I0. Then µ is said to be

(1) fuzzy r-semiopen if there is a fuzzy r-open set ρ in X such that
ρ ≤ µ ≤ cl(ρ, r),

(2) fuzzy r-semiclosed if there is a fuzzy r-closed set ρ in X such
that int(ρ, r) ≤ µ ≤ ρ.

Definition 2.3. [6] Let (X, T ) be a fuzzy topological space. For
each r ∈ I0 and for each µ ∈ IX , the fuzzy r-semiclosure is defined by

scl(µ, r) =
∧
{ρ ∈ IX | µ ≤ ρ, ρ is fuzzy r-semiclosed}

and the fuzzy r-semiinterior is defined by

sint(µ, r) =
∨
{ρ ∈ IX | µ ≥ ρ, ρ is fuzzy r-semiopen}.

Obviously scl(µ, r) is the smallest fuzzy r-semiclosed set which con-
tains µ and sint(µ, r) is the greatest fuzzy r-semiopen set which con-
tained in µ. Also, scl(µ, r) = µ for any fuzzy r-semiclosed set µ and
sint(µ, r) = µ for any fuzzy r-semiopen set µ. Moreover, we have

int(µ, r) ≤ sint(µ, r) ≤ µ ≤ scl(µ, r) ≤ cl(µ, r).

It is obvious that any fuzzy r-open (r-closed) set is fuzzy r-semiopen
(r-semiclosed). But the converse need not be true. The intersection
(union) of any two fuzzy r-semiopen (r-semiclosed) sets need not be
fuzzy r-semiopen (r-semiclosed).
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3. Fuzzy r-semicontinuous maps

Definition 3.1. [6] Let f : (X, T ) → (Y,U) be a map from a fuzzy
topological space X to another fuzzy topological space Y and r ∈ I0.
Then f is called

(1) a fuzzy r-continuous map if f−1(µ) is a fuzzy r-open set of X
for each fuzzy r-open set µ of Y , or equivalently, f−1(µ) is a
fuzzy r-closed set of X for each fuzzy r-closed set µ of Y ,

(2) a fuzzy r-open map if f(µ) is a fuzzy r-open set of Y for each
fuzzy r-open set µ of X,

(3) a fuzzy r-closed map if f(µ) is a fuzzy r-closed set of Y for each
fuzzy r-closed set µ of X,

(4) a fuzzy r-homeomorphism if f is bijective, fuzzy r-continuous
and fuzzy r-open.

Definition 3.2. [6] Let f : (X, T ) → (Y,U) be a map from a fuzzy
topological space X to another fuzzy topological space Y and r ∈ I0.
Then f is called

(1) a fuzzy r-semicontinuous map if f−1(µ) is a fuzzy r-semiopen
set of X for each fuzzy r-open set µ of Y , or equivalently, f−1(µ)
is a fuzzy r-semiclosed set of X for each fuzzy r-closed set µ of
Y ,

(2) a fuzzy r-semiopen map if f(µ) is a fuzzy r-semiopen set of Y
for each fuzzy r-open set µ of X,

(3) a fuzzy r-semiclosed map if f(µ) is a fuzzy r-semiclosed set of
Y for each fuzzy r-closed set µ of X.

It is clear that every fuzzy r-continuous(r-open, r-closed) map is a
fuzzy r-semicontinuous(r-semiopen, r-semiclosed) map for each r ∈ I0.
However the converse need not be true.

Theorem 3.3. [6] Let f : (X, T ) → (Y,U) be a map and r ∈ I0.
Then f is fuzzy r-continuous if and only if f(cl(ρ, r)) ≤ cl(f(ρ), r) for
each fuzzy set ρ of X.

Theorem 3.4. Let f : (X, T ) → (Y,U) be a map and r ∈ I0. Then
f is fuzzy r-closed if and only if f(cl(ρ, r)) ≥ cl(f(ρ), r) for each fuzzy
set ρ of X.
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Proof. Let f be a fuzzy r-closed map and ρ any fuzzy set of X. Note
cl(ρ, r) is a fuzzy r-closed set of X. Since f is fuzzy r-closed, f(cl(ρ, r))
is a fuzzy r-closed set of Y . Thus

f(cl(ρ, r)) = cl(f(cl(ρ, r)), r) ≥ cl(f(ρ), r).

Conversely, let ρ be fuzzy r-closed in X. Then cl(ρ, r) = ρ. By
hypothesis,

cl(f(ρ), r) ≤ f(cl(ρ, r)) = f(ρ) ≤ cl(f(ρ), r).

Thus cl(f(ρ), r) = f(ρ) and hence f(ρ) is fuzzy r-closed in Y . There-
fore f is fuzzy r-closed. �

¿From Theorem 3.3 and Theorem 3.4 we have the following result.

Theorem 3.5. Let f : (X, T ) → (Y,U) be a bijection and r ∈ I0.
Then the following statements are equivalent :

(1) f is a fuzzy r-homeomorphism.
(2) f is fuzzy r-continuous and fuzzy r-closed.
(3) f(cl(ρ, r)) = cl(f(ρ), r) for each fuzzy set ρ of X.

The notion of fuzzy r-semicontinuity can be restated in terms of
fuzzy r-closure and fuzzy r-interior.

Theorem 3.6. Let f : (X, T ) → (Y,U) be a map and r ∈ I0. Then
the following statements are equivalent :

(1) f is a fuzzy r-semicontinuous map.
(2) int(cl(f−1(µ), r), r) ≤ f−1(cl(µ, r)) for each fuzzy set µ of Y .
(3) f(int(cl(ρ, r), r)) ≤ cl(f(ρ), r) for each fuzzy set ρ of X.

Proof. (1) ⇒ (2) Let f be a fuzzy r-semicontinuous map and µ any
fuzzy set of Y . Then cl(µ, r) is a fuzzy r-closed set of Y . Since f is
fuzzy r-semicontinuous, f−1(cl(µ, r)) is a fuzzy r-semiclosed set of X.
Thus

f−1(cl(µ, r)) ≥ int(cl(f−1(cl(µ, r)), r), r) ≥ int(cl(f−1(µ), r), r).
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(2) ⇒ (3) Let ρ be a fuzzy set of X. Then f(ρ) is a fuzzy set of Y .
By (2),

f−1(cl(f(ρ), r)) ≥ int(cl(f−1f(ρ), r), r) ≥ int(cl(ρ, r), r).

Hence

cl(f(ρ), r) ≥ ff−1(cl(f(ρ), r)) ≥ f(int(cl(ρ, r), r)).

(3) ⇒ (1) Let µ be a fuzzy r-closed set of Y . Then f−1(µ) is a fuzzy
set of X. By (3),

f(int(cl(f−1(µ), r), r)) ≤ cl(ff−1(µ), r) ≤ cl(µ, r) = µ.

So

int(cl(f−1(µ), r), r) ≤ f−1f(int(cl(f−1(µ), r), r)) ≤ f−1(µ).

Thus f−1(µ) is a fuzzy r-semiclosed set of X and hence f is a fuzzy
r-semicontinuous map. �

We already knew the following theorem.

Theorem 3.7. [6] Let f : (X, T ) → (Y,U) be a map and r ∈ I0.
Then the following statements are equivalent :

(1) f is a fuzzy r-semicontinuous map.
(2) f(scl(ρ, r)) ≤ cl(f(ρ), r) for each fuzzy set ρ of X.
(3) scl(f−1(µ), r) ≤ f−1(cl(µ, r)) for each fuzzy set µ of Y .
(4) f−1(int(µ, r)) ≤ sint(f−1(µ), r) for each fuzzy set µ of Y .

If the map f is a bijection, we have:

Theorem 3.8. Let f : (X, T ) → (Y,U) be a bijection and r ∈ I0.
Then f is a fuzzy r-semicontinuous map if and only if int(f(ρ), r) ≤
f(sint(ρ, r)) for each fuzzy set ρ of X.
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Proof. Let f be a fuzzy r-semicontinuous map and ρ any fuzzy set
of X. Since int(f(ρ), r) is fuzzy r-open in Y , f−1(int(f(ρ), r)) is fuzzy
r-semiopen in X. Since f is one-to-one, we have

f−1(int(f(ρ), r)) ≤ sint(f−1f(ρ), r) = sint(ρ, r).

Since f is onto,

int(f(ρ), r) = ff−1(int(f(ρ), r)) ≤ f(sint(ρ, r)).

Conversely, let µ be fuzzy r-open of Y . Then int(µ, r) = µ. Since f
is onto,

f(sint(f−1(µ), r)) ≥ int(ff−1(µ), r) = int(µ, r) = µ.

Since f is one-to-one, we have

f−1(µ) ≤ f−1f(sint(f−1(µ), r)) = sint(f−1(µ), r) ≤ f−1(µ).

Thus f−1(µ) = sint(f−1(µ), r) and hence f−1(µ) is fuzzy r-semiopen
in X. Therefore f is fuzzy r-semicontinuous. �

Theorem 3.9. Let f : (X, T ) → (Y,U) be a map and r ∈ I0. Then
the following statements are equivalent :

(1) f is a fuzzy r-semiopen map.
(2) f(int(ρ, r)) ≤ sint(f(ρ), r) for each fuzzy set ρ of X.
(3) int(f−1(µ), r) ≤ f−1(sint(µ, r)) for each fuzzy set µ of Y .

Proof. (1) ⇒ (2) Let ρ be any fuzzy set of X. Clearly int(ρ, r) is
fuzzy r-open in X. Since f is fuzzy r-semiopen, f(int(ρ, r)) is fuzzy
r-semiopen in Y . Thus

f(int(ρ, r)) = sint(f(int(ρ, r)), r) ≤ sint(f(ρ), r).

(2) ⇒ (3) Let µ be any fuzzy set of Y . Then f−1(µ) is a fuzzy set
of X. By (2),

f(int(f−1(µ), r)) ≤ sint(ff−1(µ), r) ≤ sint(µ, r).
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Thus we have

int(f−1(µ), r) ≤ f−1f(int(f−1(µ), r)) ≤ f−1(sint(µ, r)).

(3) ⇒ (1) Let ρ be any fuzzy r-open set of X. Then int(ρ, r) = ρ
and f(ρ) is a fuzzy set of Y . By (3),

ρ = int(ρ, r) ≤ int(f−1f(ρ), r) ≤ f−1(sint(f(ρ), r)).

Hence we have

f(ρ) ≤ ff−1(sint(f(ρ), r)) ≤ sint(f(ρ), r) ≤ f(ρ).

Thus f(ρ) = sint(f(ρ), r) and hence f(ρ) is fuzzy r-semiopen in Y .
Therefore f is fuzzy r-semiopen. �

Theorem 3.10. Let f : (X, T ) → (Y,U) be a map and r ∈ I0.
Then the following statements are equivalent :

(1) f is a fuzzy r-semiclosed map.
(2) scl(f(ρ), r) ≤ f(cl(ρ, r)) for each fuzzy set ρ of X.

Proof. (1) ⇒ (2) Let ρ be any fuzzy set of X. Clearly cl(ρ, r) is
fuzzy r-closed in X. Since f is fuzzy r-semiclosed, f(cl(ρ, r)) is fuzzy
r-semiclosed in Y . Thus we have

scl(f(ρ), r) ≤ scl(f(cl(ρ, r)), r) = f(cl(ρ, r)).

(2) ⇒ (1) Let ρ be any fuzzy r-closed of X. Then cl(ρ, r) = ρ. By
(2),

scl(f(ρ), r) ≤ f(cl(ρ, r)) = f(ρ) ≤ scl(f(ρ), r).

Thus f(ρ) = scl(f(ρ), r) and hence f(ρ) is fuzzy r-semiclosed in Y .
Therefore f is fuzzy r-semiclosed. �

Theorem 3.11. Let f : (X, T ) → (Y,U) be a bijection and r ∈ I0.
Then f is a fuzzy r-semiclosed map if and only if f−1(scl(µ, r)) ≤
cl(f−1(µ), r) for each fuzzy set µ of Y .
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Proof. Let f be a fuzzy r-semiclosed map and µ any fuzzy set of Y .
Then f−1(µ) is a fuzzy set of X. Since f is onto, we have

scl(µ, r) = scl(ff−1(µ), r) ≤ f(cl(f−1(µ), r)).

Since f is one-to-one, we have

f−1(scl(µ, r)) ≤ f−1f(cl(f−1(µ), r)) = cl(f−1(µ), r).

Conversely, let ρ be fuzzy r- closed of X. Then cl(ρ, r) = ρ. Since
f is one-to-one,

f−1(scl(f(ρ), r)) ≤ cl(f−1f(ρ), r) = cl(ρ, r) = ρ.

Since f is onto, we have

scl(f(ρ), r) = ff−1(scl(f(ρ), r)) ≤ f(ρ) ≤ scl(f(ρ), r).

Thus f(ρ) = scl(f(ρ), r) and hence f(ρ) is fuzzy r-semiclosed in Y .
Therefore f is fuzzy r-semiclosed. �

Theorem 3.12. Let f : (X, T ) → (Y,U) and g : (Y,U) → (Z,V)
be maps and r ∈ I0. Then the following statements are true.

(1) If f is fuzzy r-semicontinuous and g is fuzzy r-continuous then
g ◦ f is fuzzy r-semicontinuous.

(2) If f is fuzzy r-open and g is fuzzy r-semiopen then g◦f is fuzzy
r-semiopen.

(3) If f is fuzzy r-closed and g is fuzzy r-semiclosed then g ◦ f is
fuzzy r-semiclosed.

Proof. Straightforward. �
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