Kangweon-Kyungki Math. Jour. 6 (1998), No. 2, pp. 137-148

A STUDY ON NILPOTENT LIE GROUPS

JEONG-KOO NAM

ABSTRACT. We briefly discuss the Lie groups, it's nilpotency and representations of a nilpotent Lie groups. Dixmier and Kirillov proved that simply connected nilpotent Lie groups over \mathbb{R} are monomial. We reformulate the above result at the Lie algebra level.

1. Introduction

Standard references are in Helgason [He], Varadarajan [V] and Serre [Se].

An analytic group G is a topological group with the structure of a connected smooth manifold such that its multiplication from $G \times G$ to G given by $(x, y) \mapsto xy$ and the inverse map of G to G given by $x \mapsto x^{-1}$ $(x \in G)$ are both smooth mappings. Such a group is locally compact; it is generated by any compact neighborhood of the identity element e. It also has a countable base. A *Lie group* is a locally compact topological group with a countable base such that the identity component is an analytic group.

Now we let G be an analytic group and let $L_x : G \to G$ be the *left* translation by $x \in G$ given by

$$L_x(y) := xy, \quad y \in G.$$

A vector field X on G is *left invariant* if it commutes with left translations as an operator on functions, i.e., if

$$dL_x(y)(X(y)) = X(xy)$$
 for all $x \in G$,

Received November 1, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 22E15 22E27 22E45 22E60. Key words and phrases: nilpotent Lie group.

where $dL_x(y)$ denotes the differential of L_x at $y \in G$. We recall that if dim G = n and (U, φ) is a chart at $g \in G$ with $\varphi(g) = (x_1(g), \dots, x_n(g))$ for some choice of coordinates x_1, \dots, x_n in \mathbb{R}^n , we can write a vector field X as

$$X(g) = \sum_{j=1}^{n} X_j(g) (d\varphi)^{-1} \left(\frac{\partial}{\partial x_j}\right), \quad g \in G.$$

Then X acts on $C^{\infty}(G)$, the space of smooth functions on G, via

(1.1)
$$Xf(g) = \sum_{j=1}^{n} X_j(g) \frac{\partial (f \circ \varphi^{-1})}{\partial x_j} \circ \varphi(g),$$

where $f \in C^{\infty}(G)$ and $g \in G$. Using the equation (1.1), we can define the *product* of two vector fields X and Y through their composition action on $C^{\infty}(G)$:

$$XY(f)(g) := X(Y(f))(g), \quad f \in C^{\infty}(G), \ g \in G.$$

The bracket [X, Y] := XY - YX of two vector fields X and Y on G is also a vector field on G. It is easy to show that for any vector fields X, Y, Z on G, the following properties

- (1.2)
 - (i) the bracket operation is bilinear,
 - (ii) $[X, X] = 0 \Leftrightarrow [X, Y] = -[Y, X]$, i.e., $[\cdot, \cdot]$ is skew-symmetric,
 - (iii) [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0

hold. The last identity (iii) is known as the Jacobi identity. A vector space over any field F with a bracket operation $[\cdot, \cdot]$ satisfying the conditions (i), (ii), (iii) in (1.2) is called a Lie algebra over F. In this section, $F = \mathbb{R}$ or \mathbb{C} . The vector space $\mathfrak{X}(G)$ of all vector fields on G forms a Lie algebra over \mathbb{R} with the bracket operation $[\cdot, \cdot]$. It is easy to check that the set \mathfrak{g} of all left-invariant vector fields on G is a Lie algebra over \mathbb{R} with the bracket operation $[\cdot, \cdot]$ and dim_{\mathbb{R}} $\mathfrak{g} = n$.

DEFINITION 1.1. Let \mathfrak{g} be a Lie algebra over \mathbb{R} with the bracket operation $[\cdot, \cdot]$. A subspace I of \mathfrak{g} is called an *ideal* of \mathfrak{g} if $[I, \mathfrak{g}] \subseteq I$.

A Lie algebra is said to be *simple* if it has no nontrivial ideals. A Lie algebra is said to be *semisimple* if it can be written as a direct sum of simple Lie algebras.

One can associate the Lie algebra \mathfrak{g} of all left-invariant vector fields on G with the tangent space $T_e(G)$ of G at e via

It is easy to see that the mapping (1.3) is an isomorphism of vector spaces. The Lie algebra structure of \mathfrak{g} carries over $T_e(G)$ via the mapping (1.3) and so we identify \mathfrak{g} with $T_e(G)$ as Lie algebras. We will say that G is *semisimple* if its Lie algebra \mathfrak{g} is semisimple and G has a finite center.

An important link between a Lie group and its Lie algebra is the existence of the *exponential map*. Let G be a Lie group with its Lie algebra \mathfrak{g} . For each $X \in \mathfrak{g}$, we let \tilde{X} be the corresponding left-invariant vector field on G. Then there exists a unique map, called the exponential map

$$(1.4) \qquad \qquad \exp: \mathfrak{g} \to G$$

such that for each $X \in \mathfrak{g}$, $t \mapsto \exp tX$ ($t \in \mathbb{R}$) is a one-parameter subgroup of G and conversely every one-parameter subgroup has this form. We will say that $t \mapsto \exp tX$ is the one-parameter subgroup of G generated by X in \mathfrak{g} . Also we may refer to X as the *infinitesimal* generator of $\exp tX$.

A fundamental fact is that the exponential map $\exp : \mathfrak{g} \to G$ is a local diffeomorphism. It is well known that for any analytic group homomorphism ϕ of a Lie group G to another Lie group G' with Lie algebra \mathfrak{g}' , the following diagram is *commutative*:

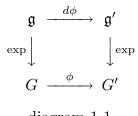


diagram 1-1.

For each $x \in G$, we denote by

(1.5)
$$\operatorname{Ad}(x): \mathfrak{g} \to \mathfrak{g}$$

the automorphism of \mathfrak{g} which is the differential of the inner automorphism I_x of G. The action of G on \mathfrak{g} given by $\operatorname{Ad} : G \to GL(\mathfrak{g})$ is called the *adjoint action* of G or the *adjoint representation* of G on \mathfrak{g} . It is obvious that the following diagrams are commutative :

Here ad denotes the differential of Ad.

For a later use, we introduce the coadjoint action of G. Let \mathfrak{g}^* be the real vector space of all \mathbb{R} -linear forms on \mathfrak{g} . For each $x \in G$, we denote by

(1.6)
$$\operatorname{Ad}^*(x) : \mathfrak{g}^* \to \mathfrak{g}^*$$

the contragredient of the adjoint mapping $\operatorname{Ad}(x) : \mathfrak{g} \to \mathfrak{g}$, i.e., the transpose of the \mathbb{R} -linear mapping $\operatorname{Ad}(x^{-1}) : \mathfrak{g} \to \mathfrak{g}$. These mappings $\operatorname{Ad}^*(x)$ $(x \in G)$ give rise to a linear representation of G in \mathfrak{g} , which is called the *coadjoint* representation of G in \mathfrak{g} . Obviously the following diagram is commutative :

$$\begin{array}{cccc}
\mathfrak{g}^* & \xrightarrow{\operatorname{ad}^*} & \operatorname{End}(\mathfrak{g}^*) \\
\exp & & & & \downarrow \exp \\
G & \xrightarrow{\operatorname{Ad}^*} & GL(\mathfrak{g}^*)
\end{array}$$

diagram 1-4.

Here ad^* denotes the differential of the map Ad^* .

A Lie group that can be realized as a closed subgroup of $GL(n, \mathbb{R})$ for some n will be called a *linear Lie group*. If G is a linear Lie group, then the Lie algebra of G can be thought of as a Lie algebra of matrices, and the exponential mapping is given by the exponential mapping for matrices :

(1.7)
$$\exp X := \sum_{l=0}^{\infty} \frac{1}{l!} X^l = I + X + \frac{X^2}{2!} + \frac{X^3}{3!} + \cdots$$

LEMMA 1.2. Let G be a Lie group with Lie algebra \mathfrak{g} and let exp : $\mathfrak{g} \to G$ be the exponential mapping of \mathfrak{g} into G. Then, if $X, Y \in \mathfrak{g}$,

(a)
$$\exp tX \cdot \exp tY = \exp\left\{t(X+Y) + \frac{t^2}{2}[X,Y] + O(t^3)\right\},$$

(b)
$$\exp(-tX) \cdot \exp(-tY) \cdot \exp tX \cdot \exp tY = \exp\{t^2[X,Y] + O(t^3)\},$$

(c)
$$\exp tX \cdot \exp tY \cdot \exp(-tX) = \exp\{tY + t^2[X,Y] + O(t^3)\}.$$

In each case $O(t^3)$ denotes a vector in \mathfrak{g} with the property : there exists an $\epsilon > 0$ such that $\frac{O(t^3)}{t^3}$ is bounded and analytic for $|t| < \epsilon$.

For the proof we refer to Helgason [He], pp. 96–97.

THEOREM 1.3. Let G be a Lie group with Lie algebra \mathfrak{g} . The exponential mapping $\exp : \mathfrak{g} \to G$ has the differential

(1.8)
$$d\exp X = d(L_{\exp X})_e \circ \frac{1 - e^{-\operatorname{ad} X}}{\operatorname{ad} X} \quad (X \in \mathfrak{g}).$$

As usual, \mathfrak{g} is here identified with the tangent space \mathfrak{g}_X .

The proof of Theorem 1.3 can be found in Helgason [He], pp. 95–96.

DEFINITION 1.4. Let \mathfrak{g} be a Lie algebra over a field F, where $F = \mathbb{R}$ or \mathbb{C} with the Lie bracket [,]. The bilinear form $B_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \to F$ defined by

(1.9)
$$B_{\mathfrak{g}}(X,Y) := Tr(\operatorname{ad} X \circ \operatorname{ad} Y), \quad X,Y \in \mathfrak{g}$$

is called the *Killing form* of \mathfrak{g} . Here ad $X : \mathfrak{g} \to \mathfrak{g}$ is the linear mapping of \mathfrak{g} into \mathfrak{g} defined by

(1.10)
$$\operatorname{ad} X(Y) := [X, Y], \quad Y \in \mathfrak{g}.$$

If σ is an automorphism of \mathfrak{g} , then $\operatorname{ad}(\sigma X) = \sigma \circ \operatorname{ad} X \circ \sigma^{-1}$. Thus we have

(1.11)
$$B_{\mathfrak{g}}(\sigma X, \sigma Y) = B_{\mathfrak{g}}(X, Y), \quad \sigma \in \operatorname{Aut}(\mathfrak{g}), \quad X, Y \in \mathfrak{g},$$

$$(1.12) \quad B_{\mathfrak{g}}(X,[Y,Z]) = B_{\mathfrak{g}}(Y,[Z,X]) = B_{\mathfrak{g}}(Z,[X,Y]), \quad X,Y,Z \in \mathfrak{g}.$$

EXAMPLE 1.5. $G = GL(n, \mathbb{R})$; the general linear group over \mathbb{R} . $\mathbb{R}^{(n,n)}$ is regarded as the Lie algebra of the Lie group $GL(n, \mathbb{R})$ with the bracket operation

$$[X,Y] = XY - YX, \quad X,Y \in \mathbb{R}^{(n,n)}.$$

EXAMPLE 1.6. Orthogonal Groups;

Let $p,q \in \mathbb{Z}^+$ with $p \ge q > 0$ and p+q = n > 0. Let $I_{p,q}$ be the quadratic form on \mathbb{R}^n given by

(1.13)
$$I_{p,q}(x_1,\cdots,x_n) = \sum_{i=1}^p x_i^2 - \sum_{j=p+1}^n x_j^2.$$

The corresponding bilinear form $B_{p,q}$ is given by

(1.14)
$$B_{p,q}((x_i), (y_i)) = \sum_{i=1}^p x_i y_i - \sum_{j=p+1}^n x_j y_j,$$

where $x = (x_i), y = (y_i) \in \mathbb{R}^n$. This form is definite if q = 0 and indefinite if q > 0. The general linear group $GL(n, \mathbb{R})$ acts on \mathbb{R}^n in the usual way by matrix multiplication. We define the orthogonal group O(p, q) by

(1.15)

$$O(p,q) := \{ g \in GL(n,\mathbb{R}) \mid I_{p,q}(g \cdot x) = I_{p,q}(x) \quad \text{for all } x \in \mathbb{R}^n \}.$$

If q = 0, we write O(p) instead of O(p, 0). It is easy to see that O(p) is compact. But if q > 0, O(p, q) is not compact and it has four connected components. We denote by $\mathfrak{o}(p, q)$ the Lie algebra of O(p, q). Then

$$\mathfrak{o}(p,q) = \{ A \in \mathbb{R}^{(n,n)} \mid B_{p,q}(Au,v) + B_{p,q}(u,Av) = 0 \quad \text{for all } u, v \in \mathbb{R}^n \}.$$

A simple computation shows that each element of $\mathfrak{o}(p,q)$ may be put in the form

$$\begin{bmatrix} -A & B \\ C & D \end{bmatrix},$$

where $A = -{}^{t}A \in \mathbb{R}^{(p,p)}$, $D = -{}^{t}D \in \mathbb{R}^{(q,q)}$ and $B = {}^{t}C$ is a $p \times q$ matrix.

2. Nilpotent groups

Let G be a group with the identity element e. For two subsets A, B of G, we denote by [A, B] the subgroup of G generated by the set of commutators

$$\{ \ [x,y] := (xy)(yx)^{-1} = xyx^{-1}y^{-1} \mid x,y \in G \ \}.$$

We observe that if A and B are normal subgroups of G, then [A, B] is a normal subgroup of G. In particular, the *derived group* $D^1G := [G, G]$ of G is a *normal* subgroup of G.

Let $l \in \mathbb{Z}^+$ be a positive integer. We define the *descending central* series $(\mathcal{C}^l G)_{l>0}$ of G recursively via

(2.1)
$$C^{o}G := G, \quad C^{l+1} := [G, C^{l}G], \quad l = 0, 1, 2, \cdots$$

Then we get the following descending filtration of normal subgroup of G:

$$(2.2) G \leftrightarrow \mathcal{C}^1 G \supset \mathcal{C}^2 G \supset \cdots \supset \mathcal{C}^l G \supset \cdots \supset \{e\}.$$

The group G is said to be *nilpotent* if there exists a positive integer $m \in \mathbb{Z}^+$ such that $\mathcal{C}^m G = \{e\}$. If $\mathcal{C}^{m-1}G \neq \{e\}$ and $\mathcal{C}^m G = \{e\}$ for $m \geq 1$, then the number m is called the *length* of the nilpotent group G and G is called a *m*-step nilpotent group.

The ascending central series $(\mathcal{C}_l G)_{l\geq 0}$ of the group G is defined recursively according to the rules

 $\begin{cases} \mathcal{C}_0 G := \{e\}, \\ \mathcal{C}_{l+1} G := \text{ the preimage of the center of } G/\mathcal{C}_l G \\ & \text{under the canonical epimorphism } G \to G/\mathcal{C}_l G. \end{cases}$

Obviously $\mathcal{C}_1 G$ is the center Z of G and we have

(2.3)
$$\mathcal{C}_{l+1}G = \{ x \in G \mid [x, y] \in \mathcal{C}_l(G) \text{ for all } y \in G \}.$$

We have the following ascending filtration of *normal* subgroups of G:

(2.4)
$$\{e\} \subset \mathcal{C}_1 G \subset \mathcal{C}_2 G \subset \cdots \subset \mathcal{C}_l G \subset \cdots \subset G.$$

Let G be a group with the identity element e and let $m \ge 1$ be a sufficiently large positive integer. Then it is easy to show that the following conditions are mutually pairwise equivalent :

(a)
$$\mathcal{C}^m G = \{e\};$$

(b) There exists a sequence $(G_l)_{0 \le l \le m}$ of subgroups of G such that $G_0 = G, G_m = \{e\},$

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_l \supset \cdots \supset G_m = \{e\}$$

and

$$[G, G_l] \subseteq G_{l+1}$$
 for all l with $0 \le l \le m-1$;

(c) $\mathcal{C}_m G = G$.

Therefore G is a nilpotent group if it satisfies one of the above three conditions. If G is a nilpotent Lie group, then it is easy to see that

- (i) each subgroup H of G is nilpotent ;
- (ii) for each normal subgroup H of G, the quotient group G/H is nilpotent.

Let $G \neq \{e\}$ be a nilpotent group. Then the center Z of G is nontrivial.

DEFINITION 2.1. The *derived series* $(D^l G)_{l\geq 0}$ of the group G is defined recursively via the prescriptions.

(2.5)
$$D^0 G = G, \ D^{l+1} G = [D^l G, D^l G], \ l = 0, 1, 2, \cdots$$

The derived series yields the descending filtration of *normal subgroups* of G:

$$(2.6) G \supset D^1G \supset D^2G \supset \cdots \supset D^lG \supset \cdots \supset \{e\}.$$

We observe that $D^1G = C^1G = [G, G]$ is the derived group of G. The group G is said to be *solvable* if there exists a sufficiently large positive integer m > 0 such that

$$D^m G = \{e\}$$

holds. If $D^{m-1}G \neq \{e\}$ and $D^mG = \{e\}$ for $m \ge 1$, then the number m is called the *length* of the solvable group G. Obviously we have $\mathcal{C}^lG \supseteq D^lG$ for all $l \in \mathbb{Z}^+$. Thus every nilpotent group is solvable, but the converse is false.

The following remarkable fact concerning finite dimensional representations of solvable groups can be easily established (c.f. [K2]).

THEOREM 2.2. Let G be a connected solvable locally compact topological group. Suppose (π, \mathcal{H}) is a finite dimensional irreducible unitary representation of G. Then dim_C $\mathcal{H} = 1$.

COROLLARY 2.3. A compact connected solvable topological group G is abelian.

Proof. It is well known that every irreducible unitary representation of a compact connected topological group is finite dimensional. Therefore any topologically irreducible unitary representation of G is finite dimensional. According to Theorem 2.2, it is one-dimensional. Hence G is abelian.

REMARK 2.4. In view of Theorem 2.2, the unitary dual \hat{G} of a connected solvable locally compact topological group G consists of two types of equivalence classes of

- (I) continuous unitary characters of G;
- (II) equivalence classes of infinite dimensional, topological irreducible unitary representations of G.

It is well known that the identity component G_0 of G is a nilpotent Lie group if and only if the Lie algebra \mathfrak{g} of G is a nilpotent Lie algebra over \mathbb{R} . We recall the notion of the nilpotency of a Lie algebra \mathfrak{g} . We define the descending central series $(\mathcal{C}^l \mathfrak{g})_{l \geq 0}$ of \mathfrak{g} recursively via the prescriptions

(2.7) $\mathcal{C}^{0}\mathfrak{g} = \mathfrak{g}, \quad \mathcal{C}^{l+1}\mathfrak{g} = [\mathfrak{g}, \mathcal{C}^{l}\mathfrak{g}], \qquad l = 0, 1, 2, \cdots.$

A Lie algebra \mathfrak{g} is said to be *nilpotent* if there exists a positive integer $m \in \mathbb{Z}^+$ such that $\mathcal{C}^m \mathfrak{g} = \{0\}$. It is well known that if G is a nilpotent Lie group over \mathbb{R} , then the exponential mapping exp : $\mathfrak{g} \to G$ is a diffeomorphism of \mathfrak{g} onto G, where \mathfrak{g} denotes the Lie algebra of G (cf.[He]).

3. Representations of a nilpotent Lie group

First we recall that a real Lie group is said to be *monomial* if each topologically irreducible unitary representation of G can be unitarily induced by a unitary character of some closed subgroup H of G.

Using the Mackey machinery, Dixmier and Kirillov proved the following important result :

THEOREM 3.1. (Dixmier-Kirillov) The simply connected nilpotent Lie groups over \mathbb{R} are monomial.

REMARK 3.2. More generally, it can be proved that a simply connected real Lie group whose exponential mapping $\exp : \mathfrak{g} = \operatorname{Lie}(G) \to G$ is a global diffeomorphism is monomial.

Now we reformulate Theorem 3.1 at the Lie algebra level. Let (π, \mathcal{H}) be a topologically irreducible, unitary representation of the simply connected, nilpotent real Lie group G in the complex Hilbert space \mathcal{H} . Let H be a connected closed subgroup of G with a unitary character χ such that

$$(\pi, \mathcal{H}) = \operatorname{Ind}_{H}^{G}(\chi, \mathbb{C}).$$

Let \mathfrak{g} be the Lie algebra of G and let \mathfrak{h} the Lie subalgebra of \mathfrak{g} corresponding to the Lie subgroup H of G. Let l_0 be the differential of χ .

Then we have the following *commutative* diagram :

$$\begin{array}{ccc}
\mathfrak{h} & \stackrel{l_0}{\longrightarrow} & \mathbb{R} \\
 \underset{e^{\exp_H}}{\overset{}} & & \downarrow e^{2\pi i} \\
 & H & \stackrel{\chi}{\longrightarrow} & \mathbb{C}_1^{\times} \\
 & \text{diagram 3-1.} \\
\end{array}$$

Here $\exp_H : \mathfrak{h} \to H$ denotes the exponential mapping of \mathfrak{h} to H. Thus we have

(3.1)
$$\chi(\exp_H X) = e^{2\pi i \langle X, l_0 \rangle}, \quad X \in \mathfrak{h}$$

and

(3.2)
$$\langle [X,Y], l_0 \rangle = 0$$
 for all $X, Y \in \mathfrak{h}$.

The relation (3.2) follows from the fact that $\exp_H[X, Y] \in [H, H]$ and $\chi(g) = 1$ for all $g \in [H, H]$. Indeed, according to (3.1), we have

$$1 = \chi(\exp_H[X,Y]) = e^{2\pi i < [X,Y], l_0 >}, \quad X, Y \in \mathfrak{h}.$$

Therefore $\langle [X, Y], l_0 \rangle$ is an integer. We have $\langle [X, Y], l_0 \rangle = 0$. Otherwise, $\langle [X, Y], l_0 \rangle = n \in \mathbb{Z}$ with $n \neq 0$. Then for sufficiently small positive real numbers t, we have

$$1 = \chi(\exp_H[tX, Y]) = e^{2\pi i tn} \neq 1$$

because $tn \notin \mathbb{Z}$. This leads to the contradiction.

Now we let $l \in \mathfrak{g}^*$ be any \mathbb{R} -linear form which extends l_0 to the whole Lie algebra \mathfrak{g} . Then \mathfrak{h} forms a *totally isotropic* vector subspace of \mathfrak{g} relative to the *skew-symmetric* \mathbb{R} -*bilinear form* $B_l : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ given by

$$(3.3) B_l(X,Y) := \langle [X,Y], l \rangle, \quad X,Y \in \mathfrak{g}$$

associated with l on \mathfrak{g} . More precisely, $B_l|_{\mathfrak{g}\times\mathfrak{g}} = 0$. In this case we say that the Lie subalgebra \mathfrak{h} of \mathfrak{g} is *subordinate to l*. We introduce the notation

$$\chi_{l,\mathfrak{h}} := \chi$$

and the monomial representation of ${\cal G}$

(3.5)
$$(\pi_{l,\mathfrak{h}},\mathcal{H}) := \operatorname{Ind}_{H}^{G}(\chi_{l,\mathfrak{h}},\mathbb{C}).$$

Then we obtain the following theorem 3.3 which can be considered as an another version of theorem 7.2 a in [K4]

THEOREM 3.3. Let G be a simply connected nilpotent real Lie group with Lie algebra \mathfrak{g} . Assume that there is given a topologically irreducible unitary representation (π, \mathcal{H}) of G. Then there exists a linear form $l \in \mathfrak{g}^*$ and a Lie subalgebra \mathfrak{h} of \mathfrak{g} subordinate to l such that

$$(\pi, \mathcal{H}) = (\pi_{l,\mathfrak{h}}, \mathcal{H}) := \operatorname{Ind}_{H}^{G}(\chi_{l,\mathfrak{h}}, \mathbb{C}).$$

We note that $\chi_{l,\mathfrak{h}}$ is a unitary character of H such that

(3.6)
$$\chi_{l,\mathfrak{h}}(\exp_H X) = e^{2\pi i \langle X, l \rangle}, \quad X \in \mathfrak{h},$$

where H is the simply connected closed subgroup of G corresponding to a Lie subalgebra \mathfrak{h} of \mathfrak{g} .

References

- [A] A. A. Sagle and R. E. Walde, *Introduction to Lie groups and Lie algebras*, Academic Press, 1989.
- [He] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, INC., 1967.
- [H-T] R. Howe and E.C. Tan, Non-abelian harmonic analysis; Applications of $SL(2,\mathbb{R})$, Springer-Verlag, New York/Berlin, 1992.
- [K1] A.A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962), 53–104.
- [K2] _____, Elements of the Theory of Representations, Springer-Verlag, New York/Berlin, 1976.
- [K3] _____, The Orbit Method, I; Geometric Quantization, Contemporary Mathematics 145 (1993).
- [K4] _____, Representation Theory and Noncommutative Harmonic Analysis I, Springer-Verlag (1988).
- [Mc] G.W. Mackey, Induced Representations of Locally Compact Groups I, Ann. of Math. 55 (1952), 101–139.
- [S] W. Schempp, Harmonic analysis on the Heisenberg nilpotent Lie group, with applications to signal theory, Longman Scientific & Technical, 1986.
- [Se] J. P. Serre, Lie algebras and Lie groups, Benjamin, New York, 1965.
- [V] V.S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice-Hall, INC., 1974.

Department of Mathematics Inha University Incheon 402-752 Korea