ON THE LEFT REGULAR *po*-Γ-SEMIGROUPS

YOUNG IN KWON AND SANG KEUN LEE

ABSTRACT. We consider the ordered Γ -semigroups in which $x\gamma x$ $(x \in M, \gamma \in \Gamma)$ are left elements. We show that this *po*- Γ -semigroup is left regular if and only if M is a union of left simple sub- Γ semigroups of M.

The concept of left regular *poe*-semigroups has been introduced in [2] and extends the concept of left regular *po*-semigroups not having the greatest element "e" in [1]. In [5], Lee and Jung showed that a *poe*-semigroup S in which every $x^2(x \in S)$ is a left ideal element is left regular if and only if there exists a family $\{S_{\alpha} | \alpha \in Y\}$ of left simple subsemigroups of S such that $S = \bigcup \{S_{\alpha} | \alpha \in Y\}$. Recently, Kwon([3]) showed that a *poe*- Γ -semigroup is left regular if and only if M is a union of left simple sub- Γ -semigroups of M.

Now we consider a po- Γ -semigroups which does not necessarily have a greatest element "e". In this paper we prove that a po- Γ -semigroup M in which every $x\gamma x(x \in M, \gamma \in \Gamma)$ is a left ideal element is left regular if and only if M is a union of left simple sub- Γ -semigroups of M.

M. K. Sen ([6]) introduced Γ -semigroups in 1981. M. K. Sen and N. K. Saha ([7],[8]) introduced Γ -semigroups different from the first definition of Γ -semigroups in the sense of Sen (1981). From Sen ([6]) we recall the following definition of Γ -semigroup.

Let M and Γ be any two non-empty sets. M is called a Γ -semigroup if

(1) $M\Gamma M \subseteq M, \Gamma M\Gamma \subseteq \Gamma.$

(2) $(a\gamma b)\mu c = a(\gamma b\mu)c = a\gamma(b\mu c)$ for all $a, b, c \in M$ and $\gamma, \mu \in \Gamma$.

Received April 20, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 03G25, 06F35.

Key words and phrases: $po\mathchar`-$ semigroup, left regular, left ideal , semiprime, left ideal element, left simple.

EXAMPLE 1. Let M be the set of all integers of the form 4n + 1where n is an integer and Γ denote the set of all integers of the form 4n+3. If $a\gamma b$ is $a + \gamma + b$, $\gamma a\mu$ is $\gamma + a + \mu$ (usual sum of the integers) for all $a, b \in M$ and $\gamma, \mu \in \Gamma$, then M is a Γ -semigroup.

A po- Γ -semigroup(: partially ordered Γ -semigroup)([5]) is an ordered set M at the same time a Γ -semigroup such that:

 $a \leq b \Longrightarrow a\gamma c \leq b\gamma c$ and $c\mu a \leq c\mu b$

 $\forall a, b, c \in M \text{ and } \forall \gamma, \mu \in \Gamma.$

Notation. For subsets A, B of M, let

$$A\Gamma B := \{a\gamma b | a \in A, b \in B \text{ and } \gamma \in \Gamma\}.$$

DEFINITION 1. Let M be a po- Γ -semigroup and A a nonempty subset of M. A is called a *left ideal* of M if

(1) $M\Gamma A \subseteq A$. (2) $a \in A, b \leq a(b \in M) \Longrightarrow b \in A$.

DEFINITION 2. A po- Γ -semigroup M is called left(right) regular if for every $a \in M$ there exists $x \in M$ such that $a \leq x\gamma(a\mu a)(\text{resp.}a \leq (a\gamma a)\mu x)$ for some $\gamma, \mu \in \Gamma$.

DEFINITION 3. Let M be a po- Γ -semigroup and T a nonempty subset of M. T is called *semiprime* if $a \in M, a\gamma a \in T(\gamma \in \Gamma) \Longrightarrow a \in T$.

DEFINITION 4. Let M be a *po*- Γ -semigroup. An element t of M is called *semiprime* if $a \in M, a\gamma a \leq t(\gamma \in \Gamma)$ implies $a \leq t$.

DEFINITION 5. Let M be a po- Γ -semigroup. A sub- Γ -semigroup T of M is called *left simple* if for every left ideal L of T we have L = T.

DEFINITION 6. An element t of M is called a *left ideal element* if $x\gamma x \leq t$ for all $x \in M$ and $\gamma \in \Gamma$.

Notation. Let M be a po- Γ -semigroup. For $H \subseteq M$,

 $(H] = \{t \in M | t \le h \text{ for some } h \in H\}.$

150

We denote by L(x) the left ideal of M generated by $x(x \in M)$. For a *po*- Γ -semigroup M we can easily prove that :

$$L(x) = \{t \in M | t \le x \text{ or } t \le a\gamma x \text{ for some } a \in M \text{ and } \gamma \in \Gamma\}$$
$$= (x \cup M\Gamma x], \forall x \in M.$$

We define a relation " \mathcal{L} " on M as follows:

$$a\mathcal{L}b \iff L(a) = L(b).$$

Then \mathcal{L} is a right congruence on M i.e. it is an equivalence relation on M such that

$$a\mathcal{L}b \Longrightarrow (a\gamma c)\mathcal{L}(b\gamma c), \forall c \in M, \forall \gamma \in \Gamma.$$

Indeed: Let $a\mathcal{L}b$. If $t \in L(a\gamma c)$, then $t \leq a\gamma c$ or $t \leq x\mu(a\gamma c)$ for some $x \in M$ and $\mu \in \Gamma$. Since $a \in L(a) = L(b)$, we have $a \leq b$ or $a \leq y\delta b$ for some $y \in M$ and $\delta \in \Gamma$. If $a \leq b$, then $t \leq b\gamma c$ or $t \leq x\mu(b\gamma c)$ i.e. $t \in L(b\gamma c)$. If $a \leq y\delta b(y \in M, \delta \in \Gamma)$, then $t \leq (y\delta b)\gamma c = y\delta(b\gamma c)$ or $t \leq (x\mu y)\delta(b\gamma c)$ i.e. $t \in L(b\gamma c)$. Thus we have $L(a\gamma c) \subseteq L(b\gamma c)$. By symmetry, $L(b\gamma c) \subseteq L(a\gamma c)$.

THEOREM 1. Let M be a po- Γ -semigroup. The following are equivalent:

(1) M is left regular.

(2) $L(a) \subseteq L(a\gamma a), \forall a \in M, \forall \gamma \in \Gamma.$

(3) $a\mathcal{L}(a\gamma a), \forall a \in M, \forall \gamma \in \Gamma.$

Proof. (1) \Longrightarrow (2). Let M be left regular. If $t \in L(a)$, then

$$t \leq a \text{ or } t \leq x\gamma a$$

for some $x \in M$ and $\gamma \in \Gamma$. Since M is left regular, $a \leq y\mu(a\gamma a)$ for some $y \in M$ and $\mu, \gamma \in \Gamma$.

If $t \leq a$, then $t \leq a \leq y\mu(a\gamma a)(y \in M, \mu, \gamma \in \Gamma)$.

If $t \leq x\gamma a$, then $t \leq x\gamma a \leq x\gamma(y\mu a\gamma a) = (x\gamma y)\mu(a\gamma a)$.

In any case, $t \leq z\mu(a\gamma a)$ for some $z \in M$. Hence $t \in L(a\gamma a)$, and so $L(a) \subseteq L(a\gamma a)$.

(2)
$$\Longrightarrow$$
 (3). Let $a \in M$. Then
 $t \in L(a\gamma a) \Rightarrow t \leq a\gamma a(\forall \gamma \in \Gamma) \text{ or } t \leq x\mu(a\gamma a)(x \in M, \mu \in \Gamma)$
 $\Rightarrow t \leq z\gamma a \text{ for some } z \in M.$

$$\Rightarrow t \in L(a).$$

By (2), $L(a) = L(a\gamma a)$. Thus we have $a\mathcal{L}(a\gamma a)(\forall a \in M, \forall \gamma \in \Gamma)$. (3) \Longrightarrow (1). Let $a \in M$. Since $a\mathcal{L}(a\gamma a)(\forall \gamma \in \Gamma)$, we have

$$a \in L(a) = L(a\gamma a) \Rightarrow a \leq a\gamma a \text{ or } a \leq x\mu(a\gamma a)(\mu \in \Gamma, x \in M).$$

If $a \leq a\gamma a (\gamma \in \Gamma)$, then $a\gamma a \leq a\gamma (a\gamma a)$ and so $a \leq a\gamma (a\gamma a)$. In any case *a* is left regular, and so *M* is left regular.

THEOREM 2. Let M be a po- Γ -semigroup in which every $x\gamma x (x \in M, \gamma \in \Gamma)$ is a left ideal element. The following are equivalent:

- (1) M is left regular.
- (2) Every left ideal element of M is semiprime.
- (3) Every left ideal of M is semiprime.

Proof. (1) \implies (2). Let t be a left ideal element of $M, a \in M$ and $a\gamma a \leq t(\gamma \in \Gamma)$. Since M is left regular, $a \leq x\mu(a\gamma a) \leq x\mu t \leq t(x \in M, \mu \in \Gamma)$. Thus t is semiprime.

(2) \implies (3). Let *L* be a left ideal of $M, a \in M$ and $a\gamma a \in L(\gamma \in \Gamma)$. Since $a\gamma a \leq a\gamma a$, and $a\gamma a$ is a left ideal element and so it is semiprime, we have $a \leq a\gamma a(\gamma \in \Gamma)$. And since *L* is a left ideal, $a \in L$. Hence *L* is semiprime.

(3) \implies (1). Let $a \in M$. Since a left ideal $L(a\gamma a)(\gamma \in \Gamma)$ is semiprime and $a\gamma a \in L(a\gamma a)$, we have $a \in L(a\gamma a)$. Thus $L(a) \subseteq L(a\gamma a)(\gamma \in \Gamma)$. By Theorem 1, M is left regular.

THEOREM 3. Let M be a po- Γ -semigroup in which every $a\gamma a (a \in M, \gamma \in \Gamma)$ is a left ideal element. Then we have that M is left regular if and only if there exists a family $\{M_{\alpha} | \alpha \in Y\}$ of left simple sub- Γ -semigroups of M such that $M = \bigcup \{M_{\alpha} | \alpha \in Y\}$.

152

Proof. Assume that M is left regular. We denote by $\mathcal{L}(x)$ the \mathcal{L} -class of M containing $x(x \in M)$.

Then $\mathcal{L}(x)$ is a left simple sub- Γ -semigroup of $M, \forall x \in M$. In fact, since $x \in \mathcal{L}(x), \mathcal{L}(x)$ is nonempty.

Let $a, b \in \mathcal{L}(x)$. Then $a\mathcal{L}x$ and $x\mathcal{L}b$. Since \mathcal{L} is a right congruence on M, we have $(a\gamma b)\mathcal{L}(x\gamma b)$ and $(x\gamma b)\mathcal{L}(b\gamma b) \ \forall \gamma \in \Gamma$. Since M is left regular, by Theorem 1, $(b\gamma b)\mathcal{L}b$. Hence we have $(a\gamma b)\mathcal{L}b$ and so $a\gamma b \in$ $\mathcal{L}(b) = \mathcal{L}(x)(\forall \gamma \in \Gamma)$. Thus $\mathcal{L}(x)$ is sub- Γ -semigroup of M.

Let L be a left ideal of $\mathcal{L}(x)$ and $z \in L$. If $y \in \mathcal{L}(x)$, then $z \in L \subseteq \mathcal{L}(x) = \mathcal{L}(y)$. Since M is left regular, by Theorem 1, we have $y \in L(y) = L(z) = L(z\gamma z) (\forall \gamma \in \Gamma)$. Then $y \leq z\gamma z$ or $y \leq t\mu(z\gamma z)(t \in M, \gamma, \mu \in \Gamma)$.

If $y \leq z\gamma z$ then, since L is a left ideal of $\mathcal{L}(x)$, we have $y \leq z\gamma z \in \mathcal{L}(x)\Gamma L \subseteq L$, and $y \in L$. And if $y \leq t\mu(z\gamma z)$, then $y \leq z\gamma z$ since every $z\gamma z(z \in M, \gamma \in \Gamma)$ is a left ideal element. In any case, $y \in L$ and so $L = \mathcal{L}(x)$. Hence every $\mathcal{L}(x)$ is a left simple sub- Γ -semigroup of M. Now $M = \bigcup \{\mathcal{L}(x) | x \in M\}$.

Conversely, suppose that $M = \bigcup \{M_{\alpha} | \alpha \in Y\}$ where M_{α} is a left simple sub- Γ -semigroup of $M, \forall \alpha \in Y$. Let L be a left ideal of $M, a \in M$ and $a\gamma a \in L(\gamma \in \Gamma)$. Then $a \in M_{\alpha}$ for some $\alpha \in Y$ and $L \cap M_{\alpha}$ is a left ideal of M_{α} .

Indeed: Since $a\gamma a \in L$ and $a\gamma a \in M_{\alpha}$, $L \cap M_{\alpha}$ is nonempty and $L \cap M_{\alpha} \subseteq M_{\alpha}$. Furthermore

$$M_{\alpha}\Gamma(L \cap M_{\alpha}) \subseteq M_{\alpha}\Gamma L \cap M_{\alpha}\Gamma M_{\alpha} \subseteq M\Gamma L \cap M_{\alpha} \subseteq L \cap M_{\alpha}.$$

Let $x \in I \cap M_{\alpha}$ and $y \leq x(y \in M_{\alpha})$. Since $x \in L$ and $y \leq x, y \in L$. Thus $y \in L \cap M_{\alpha}$. Hence $L \cap M_{\alpha}$ is a left ideal of M_{α} . Since M_{α} is left simple, we have $I \cap M_{\alpha} = M_{\alpha}$, and $a \in L$. Hence L is semiprime. By Theorem 2, M is left regular.

REMARK. If $\mathcal{L}(x)$ is a sub- Γ -semigroup of $M, \forall x \in M$, then M is left regular.

In fact: Since $x\gamma x \in \mathcal{L}(x)(\gamma \in \Gamma)$, we have $(x\gamma x)\mathcal{L}x, \forall x \in M$. By Lemma, M is left regular.

Young In Kwon and Sang Keun Lee

THEOREM 4. For a po- Γ -semigroup M, the following conditions are equivalent:

- (1) M is left regular.
- (2) Every \mathcal{L} -class of M is a left simple sub- Γ -semigroup of M.
- (3) Every \mathcal{L} -class of M is a sub- Γ -semigroup of M.
- (4) M is a union of disjoint left simple sub- Γ -semigroups of M.
- (5) M is a union of left simple sub- Γ -semigroups of M.

Proof. From the proof of the Theorem 3, we have $(1) \Rightarrow (2) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1)$. On the other hand, $(2) \Rightarrow (3)$ is obvious and $(3) \Rightarrow (1)$ by the Remark.

References

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups Vol. I*, Amer. Math. Soc., Math. Surveys 7 ,Providence (1964).
- N. Kehayoupulu, On intra-regular Ve-semigroups, Semigroup Forum 19 (1980), 111-121.
- 3. Y. I. Kwon, The left regular ordered Γ -semigroups, preprint.
- Y. I. Kwon and S. K. Lee, Some special elements on ordered Γ-semigroups, Kyungpook Math. J. 35(3) (1996), 679-685.
- S. K. Lee and J. H. Jung, On the left regular po-semigroups, Comm.Korea Math.Soc., 13 (1997), 1-5.
- 6. M. K. Sen, $On \ \Gamma$ -semigroups, Proc. of the Int. Conf. on Algebra and it's Appl., Decker Publication, New York 301.
- M. K. Sen and N. K. Saha, On Γ-semigroup I, Bull. Cal. Math. Soc., 78 (1986), 180-186.
- 8. N. K. Saha, On Γ-semigroup II, Bull. Cal. Math. Soc., 79 (1987), 331-335.

Department of Mathematics College of Education Gyeongsang National University Chinju 660-701, Korea. *E-mail*: yikwon@nongae.gsnu.ac.kr , sklee@nongae.gsnu.ac.kr

154