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THE GLOBAL BEHAVIORS OF A HOPF BIFURCATION

IN A FREE BOUNDARY PROBLEM WITH

ZERO FLUX BOUNDARY CONDITION

YoonMee Ham

Abstract. The local behaviors of the Hopf bifurcation in the free
boundary problem satisfying the zero flux boundary condition was
examined in [3]. In this paper, we shall examine the global behaviors
for this problem and shall apply the center-index theory to show the
globality.

1. Introduction

The propagator controller system with the McKean reaction term is
reduced to a free boundary problem when the layer parameter is equal to
zero. In [3], the authors showed the local existence of a Hopf bifurcation
of the problem satisfying the zero flux boundary condition:

(1.1)



vt = Dvxx − c2v + H(x− s(t)) for (x, t) ∈ Ω− ∪ Ω+,

v(0, t) = 0 = v(1, t) for t > 0,

v(x, 0) = v0(x) for 0 ≤ x ≤ 1,

τ
ds

dt
= C(v(s(t), t)) for t > 0,

s(0) = s0,
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where v(x, t) and vx(x, t) are required to be continuous in Ω. Here Ω =
(0, 1)× (0,∞), Ω− = {(x, t) ∈ Ω : 0 < x < s(t)} and Ω+ = {(x, t) ∈ Ω :
s(t) < x < 1}. Furthermore, τ is the bifurcation parameter and H(y)
denotes the Heaviside unit step function.

The local existence of a Hopf bifurcation means that at a critical value
τ ∗ of τ , the stationary solution (v∗(x), s∗), 1/3 < s∗ < 1 with 0 < 1 −
2a < 2/c2 loses stability and a branch of stable periodic solutions appears
for a finite diffusion constant D. Moreover, the steady state is stable for
τ > τ ∗ and unstable for τ < τ ∗, and τ ∗ is a bifurcation point for a stable
branch of periodic orbits which turns in the direction τ < τ ∗. This
Hopf bifurcation guarantees the existence of small amplitude, nontrivial
periodic curve bifurcating from the Hopf point (v∗(x), s∗, τ ∗). In this
paper, we shall examine the global behaviors of the Hopf bifurcation
and shall investigate the existence of a bifurcating continuum of periodic
orbits containing another center which is not a Hopf point. Here, a
center means that some eigenvalues of the linear part of (1.1) are purely
imaginary and not zero. In order to do this, we need to recall the
regularization of the system (1.1) from [3]:

(R)


du

dt
+ Au =

1

τ
G(x, s)C(u(s) + γ(s))

s′(t) = 1
τ
C(u(s) + γ(s))

u(0) = u0, s(0) = s0.

Here u(t)(x) := v(x, t) − g(x, s(t)) where g(x, s) :=
∫ 1

s
G(x, y) dy =

A−1(H(· − s))(x) and γ(s) := g(s, s) .
In section 2, we shall investigate the behaviors of the real part of

eigenvalues for the problem (R) and show the globality of the Hopf bi-
furcation in the last section.

2. The properties of real eigenvalues

In this section, we shall examine the properties of the real part of
eigenvalues for the problem (R).

The problem (1.1) has the uniquely determined stationary solution
(v∗(x), s∗), 1/3 < s∗ < 1 if 0 < 1 − 2a < 2/c2. In [3], the linearized
eigenvalue problem for (1.1) is given by

(2.1)

{
(A + λ)v = −δs∗

ρ · λ = γ′(s∗) + G(s∗, s∗) + v(s∗),
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where δs∗ is the Dirac delta function and ρ = τ/4.
We define the set Sν := {λ ∈ C |Re λ > −c2}. In the first equation

of (2.1), A + λ is invertible in Sc2 and hence it has a unique solution
v = −Gλ(·, s∗), where Gλ is a Green’s function for the operator A + λ.
It follows that the second equation of (2.1) can be written as

(2.2) ρ · λ = γ′(s∗) + G(s∗, s∗)−Gλ(s
∗, s∗).

We denote α = Re λ and β = Im λ where Re λ is the real part of the
eigenvalue and Im λ is the imaginary part of the eigenvalue. In the next
two lemmas. we show some properties of the function Gλ(s

∗, s∗):

Lemma 2.1. The function Gα(s∗, s∗) is a strictly decreasing convex
function of α, α > −c2, and

lim
α→−c2

Gα(s∗, s∗) = s∗(1− s∗), lim
α→∞

Gα(s∗, s∗) = 0 .

Furthermore,
dGλ

dλ
(s∗, s∗) 6= 0 for those values of λ with Im λ 6= 0.

Proof. Since the operator (A+λ)−1 exists for Re λ > −c2, limα→∞ (A+
α)−1 = 0 and thus we obtain limα→∞ Gα(s∗, s∗) = 0. The function
Gα(s∗, s∗) is represented by

Gα(s∗, s∗) =
sinh(s∗

√
α2 + c2) sinh((1− s∗)

√
α2 + c2)√

α2 + c2 sinh(
√

α2 + c2)

and hence we have

lim
α→−c2

Gα(s∗, s∗) = s∗(1− s∗).

In order to show that α 7→ Gα(s∗, s∗) is a strictly decreasing function,
we define h(λ)(x) := Gλ(x, s∗) − G(x, s∗). Then (in the weak sense at
first)

(A + λ)h(λ) = −λG(·, s∗) .

It follows that h(λ) ∈ D(A) and h : R+ → D(A) is differentiable with

(A + λ)h′(λ) = −Gλ(·, s∗) .

Multiplying by (A + λ)h′(λ) and integrating both sides, we obtain the
real and imaginary parts∫ 1

0

(
|Ah′(λ)|2 + (α2 − β2)|h′(λ)|2 + 2αA|h′(λ)|2

)
dx = −Re (h′(λ)(s∗)) ,



176 Yoonmee Ham

(2.3) 2β
( ∫ 1

0

(A + α)|h′(λ)|2 dx
)

= Im (h′(λ)(s∗)).

For β = 0, equation (2.3) becomes∫ 1

0

|(A + α)h′(α)|2 dx = −h′(α)(s∗) > 0.

From the definition of h, we have h′(λ)(s∗) =
dGλ

dλ
(s∗, s∗) , which implies

that Gα is a strictly decreasing function of α. Moreover, we obtain that

Im
(dGλ

dλ

)
6= 0 holds if and only if β 6= 0 as follows from (2.3).

Finally, we show the convexity of Gα. Differentiate the equation h(α)+
(A + α)h′(α) = −G(·, s∗) with respect to α and then multiply (A +
α)2h′′(α) by h′′(α) and integrate both sides. Then we obtain∫ 1

0

(A + α)3 h′′(α)2 dx = −2

∫ 1

0

(A + α)2h′(α)h′′(α) dx

= −2

∫ 1

0

(A + α)(−Gα(x, s∗))h′′(α) dx

= 2h′′(α)(s∗).

Since h′′(α) =
d2Gα

dα2
(s∗, s∗), the convexity of Gα is shown.

Lemma 2.2. For some negative number −λ̂, the function
dGλ

dλ
(s∗, s∗)

evaluated at complex eigenvalues has the following property

− dGλ

dλ
(s∗, s∗)

∣∣∣∣
(Reλ=−λ̂,Imλ=0)

> − dGλ

dλ
(s∗, s∗)

∣∣∣∣
(Reλ=0,Imλ=0)

> − 1
β

Im Gβ(s∗, s∗)
∣∣∣
(Reλ=0,Imλ=β)

.

Proof. We use the Fourier sine representation of Gλ and let −λ̂ be
a negative constant and β 6= 0. Differenting Gλ with respect to λ and
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evaluating at Re λ = −λ̂ and Im λ = 0, one obtains

− dGλ

dλ
(s∗, s∗)

∣∣∣∣
(Reλ=−λ̂,Imλ=0)

= 2
∞∑

k=1

(sin kπs∗)2

(k2π2 + c2 − λ̂)2

> 2
∞∑

k=1

(sin kπs∗)2

(k2π2 + c2)2
= − dGλ

dλ
(s∗, s∗)

∣∣∣∣
(Reλ=0,Imλ=0)

> 2
∞∑

k=1

(sin kπs∗)2

(k2π2 + c2)2 + β2
= − 1

β
ImGβ(s∗, s∗)

∣∣∣∣
(Reλ=0,Imλ=β)

,

where Gβ(s∗, s∗) is the Green’s function of the operator of A+iβ. There-
fore, the lemma is shown.

From (2.2), a real eigenvalue λ = α satisfies the equation

(2.4) γ′(s∗) + G(s∗, s∗)− ρα = Gα(s∗, s∗) ,

where γ′(s∗) + G(s∗, s∗) is a positive constant. The real eigenvalues of
(2.4) can be determined by the locating the intersection of the curve
Gα(s∗, s∗) with the straight line γ′(s∗) + G(s∗, s∗)− ρα (see Figure 1).

6

-α−c2

Gα

(L)

Figure 1: The graphs of Gα and (L) : γ′(s∗) + G(s∗, s∗)− ρα.

Let ρn be defined by

ρn := min{ ρ ∈ R : there exists at least one negative real eigenvalue
between the line γ′(s∗) + G(s∗, s∗)− ρα and Gα

for α > −c2}.
We obtain the next lemma from a simple geometrical analysis.

Lemma 2.3. There exists a positive constant ρT in Sc2 with ρT < ρn:

(i) there are no real eigenvalues of (2.4) for ρT < ρ < ρn

(ii) there exists a unique real positive eigenvalue λT at ρ = ρT
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(iii) there exist exactly two real eigenvalues λ1(ρ) and λ2(ρ) for ρ < ρT ,
where −ρT is the slope of the line which is tangent to the curve
Gα(s∗, s∗).

When ρ is close to ρT in the right hand side, the real eigenvalues are
expected to be changed to complex eigenvalues. The local behavior of
eigenvalues near (αT , ρT ) is described as follows;

Lemma 2.4. The positive real eigenvalue αT corresponding to ρ = ρT

is of multiplicity two. Near ρ = ρT , αT splits into two eigenvalues, since

λ ' αT ± i
√

∆T (ρ− ρT ) for ρ > ρT ,

λ ' αT ±
√

∆T (ρT − ρ) for ρ < ρT

with ∆T =
2αT

d2Gλ

dλ2

(s∗, s∗)

∣∣∣∣∣
(Reλ=αT , Imλ=0)

.

Proof. We define

F (λ, ρ) := λρ− (γ′(s∗) + G(s∗, s∗)) + Gα(s∗, s∗).

Since for ρ < ρn , ∂F
∂λ

(λ∗, ρ) = 0 holds if and only if (λ∗, ρ) = (αT , ρT ),
we obtain

F (λ∗, ρ) ' αT (ρ− ρT ) +
(λ− αT )2

2
· d2Gλ

dλ2
(s∗, s∗)

∣∣∣∣
(Reλ=αT ,Imλ=0)

by the Talor expansion. The conclusion follows from the above equation.

Since the Hopf bifurcation occurred at ρ = ρ∗, the critical point ρ∗

must lie in the interval (ρT , ρn). In the following lemma, we determine a
subinterval of (ρT , ρn) containing ρ∗.

Lemma 2.5. There exist a positive constant ρs and λ̂ such that there
are no eigenvalues in Sλ̂ for ρn > ρ ≥ ρs.

Proof. Let ρ0 be the slope of −Gλ(s
∗, s∗) at Reλ = 0 , i.e.,

ρ0 = −dGλ

dλ
(s∗, s∗)

∣∣∣∣
Reλ=0

.
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Then ρn > ρ0. Let ρn > ρs > ρ0 . For ρn > ρ ≥ ρs, there is no real
eigenvalue. Thus we need to show that there is no complex eigenvalue
for ρn > ρ ≥ ρs , where −λ̂ is a negative constant determined by

ρs = −dGλ

dλ
(s∗, s∗)

∣∣∣∣
Reλ=−λ̂, Imλ=0

.

By Lemma 2.2, we see that if Reλ > −λ̂ and Imλ > 0, then

ρs > −dGλ

dλ
(s∗, s∗)

∣∣∣∣
(Reλ=0,Imλ=0)

> − 1

β
Im Gβ(s∗, s∗)

∣∣∣∣
(Reλ=0,Imλ=β)

,

which implies that there is no complex eigenvalue in Sλ̂ since Im Gβ(s∗, s∗)
+ ρ · β = 0 has a solution ρ∗ when ρ∗ ≥ ρs (see [3]).

Remark 2.6. We note that ρs > ρT and ρs > ρ∗.

3. The behaviors of the Hopf bifurcation

The behaviors of the complex eigenvalues with respect to ρ after cross-
ing the imaginary axis will be described in this section. From Lemma 2.3,
there is a unique real positive eigenvalue at ρ = ρT and a pair of complex
conjugate eigenvalues appears for ρ > ρT . At this stage, there may exist
other complex eigenvalues, however, we can avoid such an existence in
the following sense.

We now trace the behavior of these other complex eigenvalues as ρ
increases from ρT . Since there is no real eigenvalue for ρn > ρ > ρT ,
they remain as complex eigenvalues and can be uniquely expressed as
functions of ρ. By Lemma 2.4, they must cross the imaginary axis from
right to left at some point ρ = ρ̂ before ρ reaches ρs. However, because
of the uniqueness of pure imaginary eigenvalues, ρ̂ must be equal to ρ∗

and the corresponding eigenvalues must be λ(ρ∗). This establishes the
global behavior of Hopf critical eigenvalues with respect to ρ. Therefore,
we have the following theorem.

Theorem 3.1. Suppose that 0 <
1− 2a

2
<

1

c2
. Then we have :

(i) At ρ = ρ∗, all other eigenvalues lie strictly in the left half-plane in
C.
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(ii) Following the Hopf bifurcation, the pure imaginary eigenvalues be-

have as follows: λ(ρ) and λ(ρ) combine to make a real eigenvalue
αT of multiplicity two at ρ = ρT (< ρ∗), which then it splits into the
two real eigenvalues, say λ1(ρ) and λ2(ρ) for ρ < ρT . Moreover, for
ρ ≤ ρ∗, there is no eigenvalue except for those constructed above
with some constant λ̂.

Now, in order to show the global Hopf bifurcation, we shall use the
center index introduced by Mallet-Paret & Yorke [2]. Let E(ρ) denote
the sum of the multiplicities of the eigenvalues of the linearization of (R)
having strictly positive real parts. Let E(ρ̂+) an d E(ρ̂−) denote right-
and left-hand limits of E at ρ̂. Define the crossing number χ, the net
number of pairs of eigenvalues crossing the imaginary axis at ρ̂ by

χ =
1

2

(
E(ρ̂+)− E(ρ̂−)

)
.

We define the center index of a center (û, ŝ, ρ̂) to be the product

(û, ŝ, ρ̂) = χ · (−1)E(ρ̂).

Essentially, a nonzero H-index

H := Σ 6= 0

implies the global Hopf bifurcation, see [1]. Therefore, we must show
that H-index is not zero.

Because of the global behavior of Hopf critical eigenvalues in The-
orem 3.1, the Hopf point (0, s∗, ρ∗) is the only center of (R). Thus,
E(ρ∗) = 0 and χ = 1 imply that a center index at (0, s∗, ρ∗) is equal
to 1. Hence, the H-index, H = Σ = 1 6= 0. Therefore, we now have a
global Hopf bifurcation.
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