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AN APPLICATION OF FRACTIONAL
DERIVATIVE OPERATOR TO A NEW CLASS OF
ANALYTIC AND MULTIVALENT FUNCTIONS

S. K. LEE AND S. B. JosHr

ABSTRACT. Making use of a certain operator of fractional deriva-
tive, a new subclass Ly(a, 8,7, A) of analytic and p-valent functions
is introduced in the present paper. Apart from various coefficient
bounds, many interesting and useful properties of this class of func-
tions are given, some of these properties involve, for example, linear
combinations and modified Hadamard product of several functions
belonging to the class introduced here.

1. Introduction and definitions.

Let S}, denote the class of functions defined by

(1.1) f(z) =2+ iap+nzp+”, peN={1,2---}

n=1

which are analytic and p-valent in the unit disk U = {z : |z] < 1}.
Also, let T, denote the subclass of S, consisting of analytic and p-
valent functions of the form

(1.2) f(z) =2P — Z apin2? T, (apsn >0, p € N).
n=1
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The object of the present paper is to investigate systematically a new
class Ly(c, §,7,A) of analytic and p-valent functions f(z) belonging
to the class T}, and satisfying the condition
L(1+p—X) nA-p A

I'(1+p) D pDz f(Z) -1

(1 - _
oS DAP DA f(2) + (1 - 7)

where and throughout this paper, parameters «, 3,7 and \ are re-
stricted as follows:

0<a<1l, 0<B<1 0<~vy<1and 0<\<I.

Further, D2 f(z) denotes the fractional derivative of f(z) of order A,
as defined below, with
DIf(z) = f(2) and D;f(z) = f'(2).

We note that such type of classes have been rather extensively studied
by Kim and Lee[3], Gupta and Jain[2], Srivastava and Aouf[8] and
by Srivastava and Owa[l0]. Several essentially equivalent definitions
of fractional derivative and fractional integral have been given in the
literature(c.f. [1], [6], [7]). We find it to be convenient to restrict
ourselves to the following definition used recently by Owa[5] (and also
by Srivastava and Owal[9]).

(1.3) B, zeU

DEFINTION 1. The fractional integral of order v is defined, for a
function f(z), by
A L= f
(1.4) DE) = 1 | e
where A\ > 0, f(z) is an analytic function in a simply connected region
of the z-plane containg the origin, and the multiplicity of (z — &)*~1 is
removed by requiring log(z — £) to be real when z — £ > 0.

DEFINITION 2. The fractional derivative of order A is defined, for a
function f(z), by
1 d 7 f
1.5 D) = ——— ———d
(15) MO = o | e
where 0 < A < 1, f(z) is an analytic function in a simply connected

region of the z-plane containing the origion and the multiplicity of
(z — €)™ is removed as in Definition 1 above.
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DEFINITION 3. Under the hypothesis of Definition 2, the fractional
derivative of order n + A is defined, for a function f(z), by

ar
(1.6) [ﬁ*Af@)_ZTELﬂf() 0<A<1, neNy).
In the present paper, we have obtained sharp result, involving co-
efficients and distortion theorems, and theorems involving modified

Hadamard products.

2. Coefficient estimates.
THEOREM 1. A function f(z) defined by (1.2) is in the class
L,(a, B,v; A) if and only if

§3Hn+1+MFﬂ+p—M
ﬂFQ+MFm+1+p—M

The result (2.1) is sharp.

(2.1)

(14 af)apsn < Bla+1—7).

Proof. Assume that the inequality (2.1) holds true and let |z| = 1.
Then we obtain

I'(1+p—X) —
F(lf—p) DAPD2 f(2) -

o ity DY PDf(2) + (1= 7)

_§§FW+1+mra+p—m n
—~ T +pl(n+1+p—A) "+
p)

n—|—1—
a_ai:%*” PL(n+1+p—N

F(1+p_)‘)zn_|_(1_7)

p+nZn - B(O‘ +1- '7)

Si (n+14+p)(1+p—2A)
— Fl+pT(n+14+p—N)

> Cn+1+pll+p=3)
DI

Fl+pI'n+1+p— )\)

Hn+1+ﬂfﬂ+p—A%
F(l+pln+1+p—A) 2*"

bﬂg

<

(1+ap)

—Bla+1-7)
1

I
=
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Thus we have that f(z) is in the class L,(a, 8,7; A).
Conversely, assume that f(z) is in the class L,(«, 3,7; A). Then it
has

(2.2)

T(14p—A) A
Ty DY PD2f(2) -

Q= DAPDAf(2) + (1 = 7)

Fn+1+p)'(1+p—A) n
Spott
Fl+pT(n+14+p—N)

(a+1—7)

-1

< B.

Z Fn+1+p)IA+p—N)
T'(1+pl(n+14+p-2A)

n
Ap+n?

Since |Re(z)| < |z| for any z, we find from (2.2) that

(2.3)
(5 M (001

X T(n+1—pT(l+p—N\) A\
_a; T +p0n+1+p— )" >} <7

Choose values of z on the real axis so that %D;\ﬂ’ f(2) is real.
Upon clearing the denominator in (2.3) and letting z — 1~ through

real values, we have

iF(n+l+p)F(1 +tr-N_
—T(1+pT(n+1+p—X) "

T(n+1+p)T(1+p—A)
S5(0‘“_7)_O‘ﬁ;r(1+p)r(n+1+p—A)“p+”’

which gives the desired assertion (2.1).
Finally, we note that the assertion (2.1) of Theorem 1, is sharp, the
extremal function being

Bla+1—-—yIT1+p)ln+1+p—2A) e [
I+af)l(n+1+p)T(A+p—N) '

(24)  flz)=2"-
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COROLLARY 1. Let the function f(z) given by (1.2) belong to the
class L, (o, B, v; \). Then

Bla+1—-MNT1+pT'n+1+p—2A)
(1+af)T(n+1+p)T(1+p—A)

for every integer n € N.

(2'5) Gp+n <

3. Distortion theorem

THEOREM 2. Let the function f(z) defined by (1.2) be in the class
L, B,7;A). Then

‘z|p_‘z‘p+1 (1 +p— /\)6<05 +1- ’7)

(3.1) (1+aB)(1 +p)
<|f(2)]
o (L= NBa+1—7)
< 2P + [z (1+aB)(1+p)
Furthermore
(3.2)

F(1+p) |Z|p—)\ o ﬁ(a+1_’y)r(1+p)|z|p+1—)\
F(1+p—2A) (I+aB)T(1+p—2A)
<D f(2)]
I'(1+p)
“Tl+p-—2X)

whenever z € U.

6(04 +1-— V)F(l +p) ’Z|p+1—)\

“A
S Cry Ty

Proof. Since f(z) € Ly(c, 3,7; A), in view of Theorem 1, we have

oo

(1+p)(1+aB)
(3:3) (1+p+A) ;a”ﬂ’

~T(n+1+pI(1+p—N
T(1+pln+14+p—2A)

Sﬁ(a+1_7)7

(1 + aﬁ)ap+n
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which evidently yields

Blat1l—7)1+p—1)
Z“"“’— L+pd+aB)

Consequently, we obtain

o0
P2 2P = 2P ang

n=1
G Bla+1—9)(1+p—A)
(1+ap)(1+p)

> |2l — |af? ,

and

o0
FE< P+ 127 angy

?a—l—l—y)(l—l—p—)\)

8
+1
R wapey) s e

which prove the assertion (3.1).
Next, by using second inequality in (3.3), we observe that

IF'l+p—X)
| AwDif(z)}

F 1+p)F n+1+p )\)

n+p|z|n+p

1+pT(1+p—2A)
> p _ |,|pt+1 (n+
2" = |2 Z T(1+pT(n+1+p—N)
ﬁ(a_{—]'_) p+1

n+p

Z|Z|p—
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and
'l+p—A
AP )
F(1+p)
(m+1+p)(1+p—N)
< |z|P n+p
d +Zr DTt 14 p—n)
Fn+1+p)l(1+p—2A)
< |z|P 4 |2PT an
27 + 21 Z TA+p)T(n+1+p—x) "7
5(04"‘1— A) 1
< |zIP + Zp+ ,
<lel + BE
which prove the assertion (3.2) of Theorem 2. O

4. Theorems involving modified Hadamard products.

Let f(z) be defined by (1.2), and let

(4.1) g(z) = 2P — Z bpin2?T", bpin >0, p € N.

The modified Hadamard product of f(z) and g(z) is defined here by
(4.2) frg(z) =2 - Z Aptnbpn 2Pt
n=1

We first prove

THEOREM 3. Let the functions fj(z)(j =1,2,---,m) defined by
(4.3)

oo

fi(2) =27 =) Cripiz"™? (Crgp; >0, j=1,2,--- ,m; peN)
n=1

be in the class Ly(aj, 35,73 A), (5 =1,2,---,m), respectively. Also,

Then
(4.5) fox foxoox f(2) € Lyp(ILy o, T 85, T 55 A)).
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Proof. Since f;(2) € Ly(aj,85,7;A)(F = 1,2,---,m), by using
Theorem 1, we have

if(n+1+p)F(1+p—/\)

(4.6) T pn 1+~ ) (1+ a;85)Chip,;
< Bijlay +1—1;)

and

(4.7) ZCnm <Bilog41-0)Utp =)

(1+a;B8;)(1 +p)
for each j = 1,2, .-+ ,m. Using (4.6) for any jo and (4.7) for the rest
we obtain
Z n—|—1+p T(1+p—2XN)
I(1+p)l'(n+1+p—A)

(1 + 7L oy B Crgp
2(14+p=N)\m—Lm m
< (%ﬂ) I, 3 (I + 1 — 724 ;)
- 17 1,#1'0(1 + ;)
2(1 A ym—1lom m
((1++19)> I B (ML oy + 1 = T2 ;)
(1+ i {a;B; )"

< I, B (I o + 1 = T2 ),

<

since
_ 2
(4.8) p <1.
I+ min {a;06;}

Cosequently, we have the assertion (4.3) with the aid of Theorem
1. 0

THEOREM 4.. Let the functions f;(z)(j = 1,2) defined by (4.2) be
in the class Ly(c, 3,7v; X). Then

(49) fl*fQ(Z) GLP(M(aaﬁa77A)7B77a>‘)

where

(4.10)  ple, B,7,A) =

The result is sharp.

(a+1D)(1+apf) - Bla+1—7)>21+p—N)
(1+aB)(1+p) '
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Proof. 1t is sufficient to prove that

Cn,lon,Z § 1

= (1+ap)T(n+1+p)T(1+p—N)
(4.11) 2:: (@t 1-)PA T+ 1tp—N)

for p < p(a, 8,7, ). By using Cauchy-Schwarrz inequality, it follows
from (2.1) that

oo

1+aB)(n+1+p)I'(1+p—2A)
. VCp1Cho <1
(4.12) §25a+4f- (1+p)F('ﬂ+1+p—/\)C’lc’2

Thus we need to find the largest u such that

E: (1+aB)T n+1+p)F(1+p—>\)(j o
Bla+1—ml(1+pT(n+1l+p—x) " "

o0

Z (14 ap)l n+1+p)F(1+p—>\)
- ﬁa+1— A +p)T(n+1+p—2A)

Cn,lcn,2

or equivalently, that

1 —
(4.13) VoG < 2T e N

a+1—7vy
In view of (4.12), it is sufficient to find the largest p such that

Bla+1—yTA+pTn+1+p—2AN) < a+1—pu

The inequality (4.14) yields

(a+1D(1+aB) - Bla+1—pu)?

(4.15) p< T+ aB Y(n), neN
where
(4.16) b(n) = FA+pl(n+1+p—2A)

Fn+1+pT(1+p—A)
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Since 1 (n) defined by (4.16) is a decreasing function of n, for fixed A,
we have

(4.17)

p = plas By, A) = (@+1)1+af) - Bla+1-7)’T(2+p—N)

(1+af)l2+p)T(1+p—A)

that is

(a+1D(1+aB)—Bla+1—7)2(1+p—N)
(1+ap)(1+p)

p < pla, By, ) =

which evidently proves the assertion (4.9) under constraint (4.10).
Finally, by taking the functions

e Bla+l1=NA+p—XN) 41 .
fi(z) ==z 1+ aB)(1+p) S =1,2.

We can see that the result in Theorem 4 is sharp. O

5. Linear combination of functions in the class L,(a, 3,7;\)

Finally, we prove

THEOREM 5.. Let each of the functions f;(2)(j = 1,2,---,m) de-
fined by (4.3) be in the class Ly(c, 3,7; ). Then the function h(z)
given by

(5.1) h(z)=—> fi(2)

is also in the class Ly, (o, 3,7, A).
Proof. By the definition (5.1) of h(z), we have
o0 1 m .
(5.2) ) = =3 | 3 G |

1=
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Since f;(z) € Ly(a, 3,7 A)(j = 1,2,--- ,m), by using Theorem 1, we
obtain

(5.3)

i n+1+p)F(1+p—)\)

1 m
1 — Chip.i

which, in view of Theorem 1, yields Theorem 5. 0

10.
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