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ON THE BEHAVIOR OF L2 HARMONIC
FORMS ON COMPLETE MANIFOLDS

AT INFINITY AND ITS APPLICATIONS

Gabjin Yun

Abstract. We investigate the behavior of L2 harmonic one forms

on complete manifolds and as an application, we show the space

of L2harmonic one forms on a complete Riemannian manifold of
nonnegative Ricci curvature outside a compact set with bounded

n/2-norm of Ricci curvature satisfying the Sobolev inequality is
finite dimensional.

1. Introduction

In this paper, all manifolds are complete, oriented and Riemannian
unless explicitly stated otherwise. Let (M, g) be a complete Riemann-
ian manifold and HpL2(M) denote the space of L2 harmonic p-forms
on M , i.e., p-forms ω ∈ Ωp(M) such that

(1.1) ∆ω = 0,

∫
M

ω ∧ ?ω =
∫

M

|ω|2 dvg < ∞.

It is clear that HpL2(M) is naturally isomorphic to Hn−pL2(M) under
the Hodge star operator ?, n = dim(M).

The basic fact for the L2 harmonic forms is the following

Lemma 1.1 ([Gro1], [Ya1]). If ω is L2 harmonic p-form on a
complete Riemannian manifold M , then it is closed and co-closed, i.e.,
dω = δω = 0.
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Obviously harmonic 0-forms are harmonic functions and there are
several well-known results for harmonic functions on a complete non-
compact Riemannian manifold. For instance, from Lemma 1.1 it is
easy to see that every harmonic L2-function on a complete Riemannian
manifold M is constant. For harmonic 1-forms, if M has nonnegative
Ricci curvature, then there is no L2 harmonic one forms on M ([Ya3]).
However, if M has nonnegative Ricci curvature outside a compact set,
then there should be a nontrivial L2 harmonic one form ([Don]). In
fact, Donnelly has proved the following

Theorem 1.2 ([Don]). Assume M is a complete Riemannian man-
ifold of nonnegative Ricci curvature outside a compact set. Then for
fixed p ≥ 2, the space of L4p harmonic one forms on M is finite dimen-
sional.

Note that L2 harmonic one forms are not necessarily in the class
of L4p, p ≥ 2. In this article, we will investigate the behavior of L2

harmonic forms and prove finiteness of dimension for the space of L2

harmonic 1-forms on a complete noncompact Riemannian manifold as
an application.

2. Behavior of harmonic one forms at infinity

Assume M is a complete noncompact Riemannian n-manifold (n ≥
3) of nonnegative Ricci curvature outside a compact set K satisfying
the Sobolev inequality, i.e.,

(2.1)
(∫

M

φ2µ

) 1
µ

≤ Cs

∫
M

|∇φ|2 for all φ ∈ C1
c (M),

with some positive constant Cs and µ = n
n−2 .

Suppose K is contained in a geodesic ball B(p, ro) of radius ro > 0
for a point p ∈ M . The volume comparison theorem shows for r ≥ ro

sufficiently large

(2.2) vol(B(p, r)) ≤ V rn,

where V > 0 is a positive constant. We denote M \ B(p, r) by D(r)
for r > ro.

In this section, we shall prove the following
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Theorem 2.1. Let M be a complete Riemannian n-manifold (n ≥
3) of nonnegative Ricci curvature outside a compact set satisfying the
Sobolev inequality. Suppose furthermore∫

M

|Ric|n/2 < ∞.

If ω is an L2 harmonic one form on M , then for r > ro,

sup
D(r)

|ω| ≤ C · r−n/2,

where C > 0 is a positive constant depending only on Cs,K, V, n and
k = max |Ric|.

Example. Let (Sn, g1), n ≥ 3, be the standard sphere and (Rn, go)
the Euclidean flat space. Let M = Sn#Rn be a connected sum of Sn

and Rn. The Riemannian metric g on M is obtained from g1 and go by
smoothing on the gluing part. Then obviously one has Ric(M, g) ≥ −k
for some constant k > 0 and Ric(M, g) ≥ 0 outside a compact set. In
fact, if letting K be a compact set containing the part Sn, then Ric ≡ 0
on M −K and so ∫

M

|Ric|n/2 =
∫

K

|Ric|n/2 < ∞.

It is also well-known (cf. [Aub]) that such a manifold M satisfies the
Sobolev inequality (2.1). It follows from Theorem 3.1 that the space of
L2 harmonic one-forms is finite dimensional. Furthermore it is known
([Don]) that such a manifold admits a non-constant bounded harmonic
function.

First we shall prove some a priori estimates for a nonnegative func-
tion u which satisfies

(2.3) ∆u ≥ −fu on M,

with nonnegative function f ≤ k, k constant.
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Lemma 2.2. Suppose f ∈ Ln/2(M), and u ∈ L2(M). Then one has

(2.4)

(∫
D(2r)

u2µ

) 1
µ

≤ C(r−2 + 1)
∫

D(r)

u2,

where C > 0 depends only on Cs, k and V .

Proof. For any constant α ≥ 1, multiplying (2.3) by φ2u2α−1, we
have

k

∫
φ2u2α ≥ −

∫
φ2u2α−1∆u,

for any compactly supported Lipschitz function φ on M . Integration
by parts gives

−
∫

φ2u2α−1∆u = 2
∫

φu2α−1〈∇φ,∇u〉+ (2α− 1)
∫

φ2u2α−2|∇u|2

≥ 2
∫

φu2α−1〈∇φ,∇u〉+ α

∫
φ2u2α−2|∇u|2.

By (2.1), and using the following identity∫
|∇(φuα)|2 =

∫
|∇φ|2u2α

+ 2α

∫
φu2α−1〈∇φ,∇u〉+ α2

∫
φ2u2α−2|∇u|2,

we get

(2.5) kα

∫
φ2u2α +

∫
|∇φ|2u2α ≥ C−1

s

(∫
(φ2u2α)µ

) 1
µ

.

Let us now choose φ(r) to be the cut-off function such that 0 ≤
φ ≤ 1, φ = 0 in B(p, r) ∪ D(2r′) and φ = 1 in D(2r) \ D(2r′) with
|∇φ| ≤ C1(r−1 + r′

−1) for 2r < r′. Substituting this φ into (2.5), one
gets

C−1
s

(∫
D(2r)\D(r′)

u2αµ

) 1
µ

≤

C1

(
1
r

+
1
r′

)2 ∫
supp|∇φ|

u2α + kα

∫
D(r)\D(2r′)

u2α.

Letting α = 1 and r′ →∞, one gets (2.4) �
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Lemma 2.3. Suppose u ∈ L2(M). Then

sup
D(r)\D(2r)

u ≤ Cr−n/2

∫
D(r/2)

u2.

Proof. Let β ≤ α. From (2.5) one has

(2.6) β

∫
φ2u2β +

∫
|∇φ|2u2β ≥ C−1

s

(∫
(φ2u2β)µ

) 1
µ

.

For r1 < r2 < r3 < r4 with r1 − r2 = r3 − r4, we take φ so that
0 ≤ φ ≤ 1, φ ≡ 0 in B(p, r) ∪ D(r4), φ = 1 in D(r2) \ D(r3) with
|∇φ| ≤ C2(r2 − r1)−1. Then substituting this φ into (2.6) we get
(2.7)

C−1
s

(∫
D(r2)\D(r3)

u2βµ

) 1
µ

≤ C2

(
β + (r2 − r1)−2

) ∫
D(r1)\D(r4)

u2β .

We set

Γ(β, r, r′) =

(∫
D(r)\D(r′)

uβ

)1/β

.

We have

(2.8) Γ(2βµ, r2, r3) ≤ {C(β + (r2 − r1)−2)}1/2βΓ(2β, r1, r4).

Taking r1,m = (1 − 2−m)r, r2,m = r1,m+1, r4,m = (2 + 2−m)r, r3,m =
r4,m+1 and βm = 2βµm, we obtain

Γ(βm+1, r1,m+1, r4,m+1) ≤ {C(β + 4 · 4mr−2)}1/2βµm

Γ(βm, r1,m, r4,m).

Inductively we have

Γ(βm, r1,m, r4,m) ≤( ∞∏
m=1

{
C(β + 4 · 4m · r−2)

}1/2βµm

)
Γ(2, r/2, 5r/2)
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Since
∑

mµ−m < ∞ and
∑

µ−m = n/2, one has
∞∏

m=1

{
C(β + 4 · 4m · r−2)

}1/2βµm

≤
∞∏

m=1

{
C(β + 4r−2)4m

}1/2βµm

≤ C3(β + 4r−2)n/4β

Hence, by setting β = 1, we get

sup
D(r)\D(2r)

u ≤ C · r−n/2{
∫

D(r/2)

u2}. �

Proposition 2.4. Under the same hypotheses as above, one has

sup
D(2r)

u ≤ C · r−n/2

∫
D(r)

u2.

Proof. It follows from Lemma 2.3 directly. In fact, one has

sup
D(2r)\D(4r)

u ≤ C · (2r)−n/2
∫

D(r)

u2.

and
∫

D(r)
u2 is bounded by

∫
M

u2 which is independent of r. So the
radius is becoming larger, the supremum is getting smaller. �

Proof of Theorem 2.1. It follows from Proposition 2.4. �

3. Applications

As an application, we shall prove the following

Theorem 3.1. Let M be a complete Riemannian n-manifold (n ≥
3) of nonnegative Ricci curvature outside a compact set satisfying the
Sobolev inequality. If ∫

M

|Ric|n/2 < ∞,

then the vector space of L2 harmonic one forms on M is finite dimen-
sional.

The proof follows from a priori estimates of the behavior of L2 har-
monic forms at infinity. Since Theorem 3.1 is trivial if M is compact,
we may assume M is noncompact.
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Proof of Theorem 3.1. Let ω be a differential one form on M . From
the Bochner-Weitzenböck formula, we have

(3.1)
1
2
∆|ω|2 = |Dω|2 + Ric(ω#, ω#).

On the other hand, since

(3.2)
1
2
∆|ω|2 = |ω|∆|ω|+ |∇|ω||2,

from Kato’s inequlaity
|∇|ω|| ≤ |Dω|,

one has

(3.3) ∆|ω| ≥ −|Ric||ω|.

We may assume from the hypothesis that

Ric(M) ≥ −k,

where k > 0 depends on the compact set K and assume K ⊂ B(p, ro).
Let ω be a L2 harmonic one form on M . Then one has from (3.3)

∆|ω| ≥ −k|ω|.

Applying Theorem 2.1, one has for ro < r∫
M

|ω|4p =
∫

B(p,r)

|ω|4p +
∫

D(r)

|ω|4p

≤
∫

B(p,r)

|ω|4p + C · r−2np

(∫
D(r/2)

|ω|2
)4p

.

This implies H1L2(M) ⊂ H1L4p(M) and so the proof follows from
Theorem 1.2. �
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