Kangweon-Kyungki Math. Jour. 6 (1998), No. 2, pp. 221-229

RELATIONS OF IDEALS OF CERTAIN REAL ABELIAN FIELDS

JAE MOON KIM

ABSTRACT. Let k be a real abelian field and k_{∞} be its \mathbb{Z}_{p} -extension for an odd prime p. Let A_n be the Sylow p-subgroup of the ideal class group of k_n , the nth layer of the \mathbb{Z}_p -extension. By using the main conjecture of Iwasawa theory, we have the following: If p does not divide $\prod_{\chi \in \widehat{\Delta}_k, \chi \neq 1} B_{1,\chi\omega^{-1}}$, then $A_n = \{0\}$ for all $n \geq 0$, where $\Delta_k = Gal(k/\mathbb{Q})$ and ω is the Teichmüller character for p.

The converse of this statement does not hold in general. However, we have the following when k is of prime conductor q: Let q be an odd prime different from p and let k be a real subfield of $\mathbb{Q}(\zeta_q)$. If $p \mid \prod_{\chi \in \widehat{\Delta}_{k,p}, \chi \neq 1} B_{1,\chi\omega^{-1}}$, then $A_n \neq \{0\}$ for all $n \geq 1$, where $\Delta_{k,p}$ is the Galois group $Gal(k_{(p)}/\mathbb{Q})$ and $k_{(p)}$ is the decomposition field of k for p.

0. Introduction.

Let k be a number field and $k_{\infty} = \bigcup_{n\geq 0} k_n$ be a \mathbb{Z}_p -extension of k for a prime p. Let A_n be the Sylow p-subgroup of the ideal class group of k_n and $A_{\infty} = \varprojlim A_n$ be the inverse limit of A_n under the norm maps. During the past few decades, the growth of $\#A_n$ and the structure of A_{∞} have been studied exhaustively after K.Iwasawa. Let e_n be the exact power of p of $\#A_n$. K.Iwasawa([3]) found that there are integers μ , $\lambda \geq 0$ and ν such that $e_n = \mu p^n + \lambda n + \nu$ for $n \gg 0$. These constants μ , λ and ν are called the Iwasawa invariants for k_{∞}/k . Later in 1979, B.Ferrero and L.Washington proved that $\mu = 0$ when k is an abelian field and k_{∞} is the cyclotomic \mathbb{Z}_p -extension of k([1]). Around

Received June 5, 1998.

¹⁹⁹¹ Mathematics Subject Classification: primary:11R23, secondary:11R29.

Key words and phrases: main conjecture, Iwasawa invariants, circular units. This paper was supported by research fund of Inha University, 1997.

at the same time, R.Greenberg conjectured $\lambda = 0$ when k is a totally real field and gave a number of examples supporting his conjecture in ([2]).

Note that when k is a real abelian field, k admits only one \mathbb{Z}_p -extension for each p, namely the cyclotomic \mathbb{Z}_p -extension since the Leopoldt's conjecture holds in this case([10]). Thus when k is a real abelian field, according to Iwasawa-Ferrero-Washington, $e_n = \lambda n + \nu$ for $n \gg 0$. And if the Greenberg conjecture holds, then $e_n = \nu$ is independent of n for $n \gg 0$ and A_n capitulates in k_{∞} . The aim of this paper is to discuss conditions for $A_n = \{0\}$, i.e., $\lambda = \nu = 0$ when k is real abelian. In the following theorem a sufficient condition for $\lambda = \nu = 0$ is given in terms of Bernoulli numbers.

THEOREM 1. Let k be a real abelian field and let $\Delta_k = Gal(k/\mathbb{Q})$. If p does not divide $\prod_{\chi \in \widehat{\Delta}_k, \chi \neq 1} B_{1,\chi\omega^{-1}}$, then $A_n = \{0\}$ for all $n \geq 0$, where ω is the Teichmüller character for p.

We will briefly sketch the proof of Theorem 1 in Section 1 by using the main conjecture of Iwasawa theory which was first proved by B.Mazur and A.Wiles([8]). The rest of this paper is devoted to a discussion of the converse of Theorem 1. Namely, we will examine what happens if p divides $\prod B_{1,\chi\omega^{-1}}$. When $k = \mathbb{Q}(\sqrt{85})$ and p = 3, $B_{1,\chi\omega^{-1}} = -12$ but the class number of k is 2, so $A_0 = \{0\}$. Thus the converse of Theorem 1 is not true in general. However, in [5], the following is proved when $[k : \mathbb{Q}] = 2$ and p splits in k: Let k be a real quadratic field and p be an odd prime which splits in k. If p divides $B_{1,\chi\omega^{-1}}$, then $A_n \neq \{0\}$ for $n \geq 1$.

In this paper, we will generalize this to an arbitrary real abelian field of prime conductor q. The main tools for the generalization are certain relations of prime ideals of k_n above p coming from circular units of k_n . In Section 2, we will briefly review circular units of abelian fields defined by W.Sinnott([9]) and find relations of prime ideals of k_n above p. Finally, in Section 3, we will prove the following theorem :

THEOREM 3. Let q be an odd prime and let k be a real subfield of $\mathbb{Q}(\zeta_q)$. Let p be an odd prime such that $p \nmid [k : \mathbb{Q}]$. If $p \mid \prod_{\chi \in \widehat{\Delta}_{k,p}, \chi \neq 1} B_{1,\chi\omega^{-1}}$, then $A_n \neq \{0\}$ for all $n \geq 1$.

1. Proof of theorem 1

THEOREM 1. If p does not divide $\prod_{\chi \in \widehat{\Delta}_k, \chi \neq 1} B_{1,\chi\omega^{-1}}$, then $A_n = \{0\}$ for all $n \geq 0$.

Proof. Let L_{∞} and M_{∞} be the maximal unramified and p-ramified abelian p-extensions of k_{∞} respectively. Let $Y = Gal(M_{\infty}/k_{\infty})$, and let $Y_1 = \bigoplus_{\chi \neq 1} Y(\chi)$ be the direct sum of the χ -components $Y(\chi)$ of Y for each nontrivial $\chi \in \widehat{\Delta}_k$. Then by the main conjecture, $Y(\chi)$ is pseudo-isomorphic to $\Lambda/(f_{\chi})$, where $\Lambda = \mathbb{Z}_p[[T]]$ and f_{χ} is the power series in Λ giving rise to the p-adic L-function. Note that

$$f_{\chi}(0) = L_p(0,\chi) = -B_{1,\chi\omega^{-1}}.$$

Let $f = \prod_{\chi \in \widehat{\Delta}_k, \chi \neq 1} f_{\chi}$. Then $Y_1 = \bigoplus_{\chi \neq 1} Y(\chi)$ is pseudo-isomorphic to $\Lambda/(f)$ and

$$f(0) = \prod_{\chi} f_{\chi}(0) = \pm \prod_{\chi} B_{1,\chi\omega^{-1}}.$$

Since $p \nmid \prod_{\chi} B_{1,\chi\omega^{-1}}$ by assumption, $p \nmid f(0)$. Therefore f is a unit in Λ . Hence Y_1 is pseudo-isomorphic to $\Lambda/(f) = \{0\}$, i.e., there is a Λ -module homomorphism $Y_1 \to 0$ with a finite kernel. But since each $Y(\chi)$ does not have a finite Λ -submodule (see the appendix of [7]), $Y_1 = \{0\}$. Therefore $Gal(L_{\infty}/k_{\infty})$, a quotient of Y_1 , is also trivial. Since $Gal(L_{\infty}/k_{\infty}) \simeq \varprojlim A_n$ and since $A_m \to A_n$ is surjective for m > n by class field theory, A_n is trivial for all $n \ge 0$.

2. Relations of prime ideals above p

Let P_n be the multiplicative subgroup of $\mathbb{Q}(\zeta_n)^{\times}$ generated by $\{\pm 1\}$ and $\{1 - \zeta_n^a | 0 < a < n\}$. Then the group $C_{\mathbb{Q}(\zeta_n)}$ of cyclotomic units of $\mathbb{Q}(\zeta_n)$ is defined to be

$$C_{\mathbb{Q}(\zeta_n)} = E_{\mathbb{Q}(\zeta_n)} \cap P_n,$$

where $E_{\mathbb{Q}(\zeta_n)}$ is the unit group of $\mathbb{Q}(\zeta_n)$. In general, for an abelian field F, W.Sinnott defines the group of circular units of F as follows([9]). For each n > 2, let

$$F_n = F \cap \mathbb{Q}(\zeta_n) \text{ and } C_{F_n} = N_{\mathbb{Q}(\zeta_n)/F_n}(C_{\mathbb{Q}(\zeta_n)}).$$

Then the group C_F of circular units of F is defined to be the multiplicative subgroup of F^{\times} generated by C_{F_n} together with -1. Note that if n is prime to the conductor of F, then $F_n = \mathbb{Q}$ and so $C_{F_n} = \{1\}$. Thus there are only finitely many n's to be considered in the definition of C_F .

Let k be a real subfield of $\mathbb{Q}(\zeta_q)$ for an odd prime q and let $k_{\infty} = \bigcup_{n\geq 0} k_n$ be the \mathbb{Z}_p -extension of $k = k_0$ for an odd prime p with (p,q) = 1. Here, k_n means the nth layer of the \mathbb{Z}_p -extension, not $k \cap \mathbb{Q}(\zeta_n)$. For each $n \geq 0$, we denote the group of circular units of k_n by C_n . Then the index theorem of W.Sinnott says the following ([9]):

INDEX THEOREM. Let E_n be the unit group of k_n and h_n be the class number of k_n . Then $[E_n : C_n] = 2^{c_n} h_n$ for some integer c_n .

For each integer $s \ge 1$, we choose a primitive sth root ζ_s of 1 so that $\zeta_t^{\frac{t}{s}} = \zeta_s$ if s|t. Let $K = \mathbb{Q}(\zeta_q), F = \mathbb{Q}(\zeta_p)$ and $K' = \mathbb{Q}(\zeta_{pq})$. We denote their cyclotomic \mathbb{Z}_p - extensions by K_{∞} , F_{∞} , and K'_{∞} . Let σ be the topological generator of the Galois group $\Gamma = Gal(K'_{\infty}/K')$ which maps ζ_{p^n} to $\zeta_{p^n}^{1+p}$ for all $n \geq 1$. Restrictions of σ to various subfields are also denoted by σ . Let $k_{(p)}$ be the decomposition subfield of k for p and let $\Delta = Gal(K/k), \ \bar{\Delta} = Gal(K/\mathbb{Q}), \ \Delta_p = Gal(K/k_{(p)}), \ \Delta_k =$ $Gal(k/\mathbb{Q})$ and $\Delta_{k,p} = Gal(k_{(p)}/\mathbb{Q})$. Let $[k:\mathbb{Q}] = d$ and $[k_{(p)}:\mathbb{Q}] = l$, so there are l prime ideals in k above p. Elements of Δ , Δ or Δ_p will be denoted by τ 's and those of Δ_k and $\Delta_{k,p}$ by ρ 's. The Frobenius automorphism of K for p or its restriction to k is denoted by τ_p . Let R be the set of all roots of 1 in \mathbb{Z}_p , i.e., $R = \{\omega \in \mathbb{Z}_p | \omega^{p-1} = 1\}$. Then R can be regarded as the Galois group $Gal(F/\mathbb{Q})$ or any Galois group isomorphic to it such as $Gal(F_n/\mathbb{Q}_n)$, where \mathbb{Q}_n is the subfield of F_n of degree p^n over \mathbb{Q} . For m > n, let $G_{m,n}$ be the Galois group $Gal(K'_m/K'_n)$ and $N_{m,n}$ be the norm map $N_{K'_m/K'_n}$ from K'_m to K'_n . We will abbreviate $G_{m,0}$ and $N_{m,0}$ by G_m and N_m respectively. $G_{m,n}$ will also mean the Galois groups $Gal(k_m/k_n)$, $Gal(F_m/F_n)$ and $Gal(\mathbb{Q}_m/\mathbb{Q}_n)$. Similarly $N_{m,n}$ will have various meanings. Finally we fix a generator ψ_n of the character group of $Gal(\mathbb{Q}_n/\mathbb{Q})$ such that $\psi_n(\sigma) = \zeta_{p^n}$. Then we have the following cohomology groups of circular units([6]).

THEOREM. Suppose $p \nmid d = [k : \mathbb{Q}]$. Then, for $m > n \ge 0$, we have

the followings.

(1)
$$C_m^{G_{m,n}} = C_n,$$

(2)
$$\widehat{H}^0(G_{m,n},C_m) \simeq (\mathbb{Z}/p^{m-n}\mathbb{Z})^{l-1},$$

(3)
$$\widehat{H}^{-1}(G_{m,n},C_m) \simeq (\mathbb{Z}/p^{m-n}\mathbb{Z})^l.$$

Fix a prime ideal \wp_0 of $k_{(p)}$ above p. We will also think of \wp_0 as a prime ideal of $k = k_0$. Let $\Delta_{k,p} = \{\rho_1, \dots, \rho_{l-1}, \rho_l = id\}$. We denote the unique prime ideal of k_n (or of $k_{(p)}\mathbb{Q}_n$) above \wp_0 by \wp_n . Then $\{\wp_n^{\rho_i} \mid 1 \leq i \leq l\}$ is the set of prime ideals of k_n above p.

Let $C_{\infty} = \bigcup_{n \geq 0} C_n$ and $E'_{\infty} = \bigcup_{n \geq 0} E'_n$, where E'_n is the group of *p*-units of k_n . We know that $H^1(\Gamma, C_{\infty}) \simeq (\mathbb{Q}_p/\mathbb{Z}_p)^l$ by above theorem, where $\Gamma = Gal(k_{\infty}/k)$. On the other hand, $H^1(\Gamma, E'_{\infty})$ is a finite group([4]). Since $\mathbb{Q}_p/\mathbb{Z}_p$ cannot have a nontrivial finite quotient, the induced homomorphism $H^1(\Gamma, C_{\infty}) \to H^1(\Gamma, E'_{\infty})$ is a zero map. Therefore $H^1(G_n, C_n) \to H^1(G_n, E'_n)$ is also a zero map for every $n \geq 1$ by the injectivity of the inflation maps on H^1 . Let

$$\delta = \prod_{\substack{\omega \in R \\ \tau \in \Delta_p}} (\zeta_{p^2}^{\omega} - \zeta_q^{\tau}) \text{ and } \delta_i = \delta^{\rho_i} = \prod_{\substack{\omega \in R \\ \tau \in \Delta_p}} (\zeta_{p^2}^{\omega} - \zeta_q^{\tau \rho_i}).$$

As was shown in [6], $N_1(\delta) = N_1(\delta_i) = 1$ and $\{\delta_1, \dots, \delta_{l-1}, \pi_1^{\sigma-1}\}$ generates $H^1(G_1, C_1)$, where $\pi_1 = \prod_{\omega \in R} (\zeta_{p^2}^{\omega} - 1)$. Therefore, by the injectivity of $H^1(G_1, C_1) \to H^1(G_1, E_1)$, we have

$$\delta = \alpha^{\sigma-1}$$
 and $\delta_i = \delta^{\rho_i} = \alpha_i^{\sigma-1}$

for some p-units α in k_1 and $\alpha_i = \alpha^{\rho_i}$. That is, as an ideal,

$$(\alpha) = \wp_1^{\sum_{1 \le i \le l} g(\rho_i) \rho_i^{-1}}$$

for some integers $g(\rho_i)$. Note that these integers are determined uniquely modulo p by δ since \wp_0 ramifies totally in k_1 . Then for each k, $1 \le k \le l-1$, (α_k) is factorized as

$$(\alpha_k) = (\alpha)^{\rho_k} = \wp_0^{\sum_{1 \le i \le l} g(\rho_i) \rho_i^{-1} \rho_k} = \wp_1^{\sum_{1 \le j \le l} g(\rho_j^{-1} \rho_k) \rho_j}.$$

THEOREM 2. Let $\delta = \alpha^{\sigma-1}$ and $(\alpha) = \wp_1^{\sum_{1 \le i \le l} g(\rho_i)\rho_i^{-1}}$ as above. Let χ be a nontrivial character of $\Delta_{k,p}$ and $\tau(\chi) = \sum_{1 \le a < q} \chi(a)\zeta_q^a$ be the Gauss sum for χ . Then

$$\sum_{1 \le i \le l} \chi(\rho_i) g(\rho_i) \equiv -\frac{q}{\tau(\chi)} B_{1,\chi\omega^{-1}} \mod (\zeta_{p^2} - 1).$$

Proof. For each *i*, we read the equation $\delta_i = \alpha_i^{\sigma-1}$ in k_{1,\wp_1} , the completion of k_1 at \wp_1 . Since

$$(\alpha_i) = \wp_1^{\sum_{1 \le j \le l} g(\rho_j^{-1} \rho_i) \rho_j},$$

 $\alpha_i = \pi_1^{g(\rho_i)} u$ for some unit u in k_{1,\wp_1} . Thus, in $\mathbb{Q}_p(\zeta_{p^2})$,

$$\alpha_i = \pi^{(p-1)g(\rho_i)}\eta$$

for some unit η in $\mathbb{Q}_p(\zeta_{p^2})$, where $\pi = \zeta_{p^2} - 1$. Hence

$$\delta_i = \alpha_i^{\sigma-1} = \pi^{(p-1)g(\rho_i)(\sigma-1)} \eta^{\sigma-1}.$$

Since

$$\pi^{\sigma-1} \equiv 1 + \pi^{p-1} \text{ and } \eta^{\sigma-1} \equiv 1 \mod \pi^p,$$

we have

$$\delta_i \equiv 1 + (p-1)g(\rho_i)\pi^{p-1} \equiv 1 - g(\rho_i)\pi^{p-1} \mod \pi^p.$$

Therefore

$$log_p \delta_i \equiv log_p (1 - g(\rho_i) \pi^{p-1})$$

$$\equiv -g(\rho_i) \pi^{p-1} - \frac{1}{2} (g(\rho_i) \pi^{p-1})^2 - \dots - \frac{1}{p} (g(\rho_i) \pi^{p-1})^p - \dots$$

$$\equiv g(\rho_i) \mod \pi,$$

since $\pi^{p(p-1)}/p \equiv -1 \mod \pi$ and every other term is congruent to 0 mod π . Hence

$$\sum_{1 \le i \le l} \chi(\rho_i) g(\rho_i) \equiv \sum_{1 \le i \le l} \chi(\rho_i) \log_p \delta_i$$

$$= \sum_{1 \le i \le l} \chi(\rho_i) \log_p (\prod_{\substack{\omega \in R \\ \tau \in \Delta_p}} (\zeta_{p^2}^{\omega} - \zeta_q^{\tau \rho_i}))$$

$$= \sum_{\substack{\omega \in R \\ \tau \in \Delta_p, 1 \le i \le l}} \chi(\rho_i) \log_p (\zeta_{p^2}^{\omega} - \zeta_q^{\tau \rho_i})$$

$$= \sum_{\substack{\omega \in R \\ \tau \in \overline{\Delta}}} \chi(\tau) \log_p (\zeta_{p^2}^{\omega} - \zeta_q^{\tau})$$

$$\equiv -\frac{q}{\tau(\chi)} B_{1,\chi\omega^{-1}} \mod \pi.$$

The last congruence comes from a slight modification of Proposition 1 of [5]. $\hfill \Box$

3. Application to the proof of theorem 3

Let A be the $l \times l$ matrix with *i*th column

$$A^{i} = (g(\rho_{1}^{-1}\rho_{i}), \cdots, g(\rho_{l}^{-1}\rho_{i}))^{t}$$

for $1 \leq i \leq l-1$ and the last column $A^l = (1, \dots, 1)^t$. It is not hard to see that (for instance, apply lemma 5.26 of [10])

$$det \ A = \prod_{\substack{\chi \in \widehat{\Delta}_{k,p} \\ \chi \neq 1}} \sum_{1 \le i \le l} \chi(\rho_i) g(\rho_i).$$

Then we have

$$det \ A \equiv \pm q^{\frac{l-1}{2}} \prod_{\substack{\chi \in \widehat{\Delta}_{k,p} \\ \chi \neq 1}} B_{1,\chi\omega^{-1}} \ \mathrm{mod} \ p\mathbb{Z}_p$$

by Theorem 2, since $\prod_{\tau} \tau(\chi) = q^{(l-1)/2}$. Now we prove Theorem 3.

THEOREM 3. Let q be an odd prime and let k be a real subfield of $\mathbb{Q}(\zeta_q)$. Let p be an odd prime such that $p \nmid [k : \mathbb{Q}]$. If $p \mid \prod_{\chi \in \widehat{\Delta}_{k,p}, \chi \neq 1} B_{1,\chi\omega^{-1}}$, then $A_n \neq \{0\}$ for all $n \geq 1$.

Proof. Suppose that $p | \prod_{\chi(p)=1, \chi \neq 1} B_{1,\chi\omega^{-1}}$. Then $det A \equiv 0 \mod p$. So there is a nontrivial vector $B = (b_1, \cdots, b_l)^t$ such that $AB \equiv \mathbb{O} \mod p$. Consider $\xi = \delta_1^{b_1} \cdots \delta_{l-1}^{b_{l-1}} \pi_1^{(\sigma-1)b_l}$. Then

$$\xi = (\alpha_1^{b_1} \cdots \alpha_{l-1}^{b_{l-1}} \pi_1^{b_l})^{\sigma-1}.$$

Since

$$(\alpha_i) = \wp_1^{\sum_{1 \le j \le l} g(\rho_j^{-1}\rho_i)\rho_j}$$
 and $(\pi_1) = \wp_1^{\sum_{1 \le j \le l} \rho_j}$.

we have

$$(\alpha_1^{b_1} \cdots \alpha_{l-1}^{b_{l-1}} \pi_1^{b_l}) = \wp_1^{\sum_{1 \le j \le l} (\sum_{1 \le i \le l-1} g(\rho_j^{-1} \rho_i) b_i + b_l) \rho_j}$$

Note that $\sum_{1 \le i \le l-1} g(\rho_j^{-1}\rho_i)b_i + b_l$ is the *j*th entry of *AB*, which is congruent to 0 mod *p*. Hence

$$(\alpha_1^{b_1} \cdots \alpha_{l-1}^{b_{l-1}} \pi_1^{b_l}) = \wp_1^{p \sum_{1 \le j \le l} c_j \rho_j} = I_0$$

for some ideal I_0 of k_0 . To finish the proof, we will show that p divides the class number h_1 of k_1 , which clearly implies that $A_n \neq 0$ for $n \geq 1$ by class field theory.

If p divides the class number of k_0 , there is nothing to prove. Otherwise, there is no nontrivial capitulation from k_0 to k_1 . Thus I_0 must be a principal ideal $I_0 = (\alpha_0)$ for some α_0 in k_0 . Therefore

$$\alpha_1^{b_1} \cdots \alpha_{l-1}^{b_{l-1}} \pi_1^{b_l} = \alpha_0 u$$

for some unit u in k_1 . Hence

$$\xi = (\alpha_1^{b_1} \cdots \alpha_{l-1}^{b_{l-1}} \pi_1^{b_1})^{\sigma-1} = u^{\sigma-1}.$$

Since $B \not\equiv (0, \dots, 0)^t \mod p$, ξ is not in $C_1^{\sigma-1}$. Thus we have a nontrivial kernel of the homomorphism $H^1(G_1, C_1) \to H^1(G_1, E_1)$, where E_1 is the unit group of k_1 . From the short exact sequence

$$0 \to C_1 \to E_1 \to E_1/C_1 \to 0,$$

we get a long exact sequence

 $0 \to C_0 \to E_0 \to (E_1/C_1)^{G_1} \to H^1(G_1, C_1) \to H^1(G_1, E_1) \to \cdots$

Since $H^1(G_1, C_1) \to H^1(G_1, E_1)$ is not injective,

$$(E_1/C_1)^{G_1} \otimes \mathbb{Z}_p \neq \{0\}.$$

Therefore $E_1/C_1 \otimes \mathbb{Z}_p \neq \{0\}$. Then by the index theorem of W.Sinnott in Section 2, we have $p|h_1$ as desired.

References

- [1] B.Ferrero and L.Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann.of Math. **109** (1979), 377–395.
- R.Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263–284.
- [3] K.Iwasawa, On Z_l-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
- [4] K.Iwasawa, On cohomology groups of units for Z_p-extensions, Amer.J.Math. 105 No.1 (1983), 189–200.
- [5] J.M.Kim, Class numbers of real quadratic fields, Bull.Austral.Math.Soc. 57 (1998), 261–274.
- [6] J.M.Kim, Circular units in the \mathbb{Z}_p -extensions of real abelian fields of prime conductor (to appear).
- [7] S.Lang, Cyclotomic Fields, G.T.M. 59, 69, Springer-Verlag, New York.
- [8] B.Mazur and A.Wiles, Class fields of abelian extensions of Q, Invent.Math. 76 (1984), 179–330.
- [9] W.Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent.Math. 62 (1980), 181–234.
- [10] L.Washington, Introduction to Cyclotomic Fields, G.T.M.83, Springer-Verlag, New York, 1980.

Department of Mathematics Inha University Inchon,Korea *E-mail*: jmkim@math.inha.ac.kr