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CENTRAL LIMIT THEOREM ON HYPERGROUPS

Lee, Jae Won and Park, Sung Wook

Abstract. On the basis of Heyer and Zeuner’s results we will treat

the central limit theorem for probability measures on hypergroup.

0. Introduction

The purpose of this article is to verify a central limit theorem for
random variables which take their values in a hypergroup. However
the special case that G is the one-dimensional hypergroup will not
be considered in any details because of the amount of material that
involved on real line. Real line central limit theorem began with looking
at limit distributions of the form as

(1)
X1 +X2 + · · ·+Xn − an

bn
as n→∞

for a sequence {Xn} of i.i.d. random variables, where an and bn are
constants. The theory also broadened to consider the more general
problem of finding the limiting distributions of the row sums

∑kn

i=1Xn,i

of triangular arrays {Xn,i : i = 1, · · · , kn;n ≥ 1} in which the ran-
dom variables {Xn,i : i = 1, · · · , kn} are independent for each n. For
hypergroup-valued random variable, scaling, as represented by the divi-
sion bn in formula (1), is generally impossible and central limit theorem
on hypergroups has therefore tended to concentrate on triangular ar-
rays.
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Let G be a hypergroup and M b
+(G) and M1(G) denote the spaces

of bounded positive measures and probability measures on G furnished
with the weak topology Tw, respectively . Let (µi)i≥1 be a sequence
of measures in M1(G). Then there is a probability space (Ω,F , P )
consisting of a nonempty Ω, a σ-field F of subsets of Ω and a probabil-
ity measure P on (Ω,F) and there exists for each i ≥ 1 a measurable
function Xi : Ω → G such that Xi(P ) = µi. Moreover the sequence
(Xi)i≥1 constructed as before is called to be independent in the sense
that for all n ≥ 1 and disjoint Borel sets B1, · · · , Bn the formula

P

[
n⋂

i=1

{Xi ∈ Bi}

]
=

n∏
i=1

P [Xi ∈ Bi]

holds. Given any probability space (Ω,F , P ) and a hypergroup G
we introduce a G-valued random variable as a measurable function
X : Ω → G and its distribution on the image measure X(P ) = µ of P
under X.

1. Preliminaries

Let G be a hypergroup and let T denote the unit circle group. De-
note G∧ by the dual group of G. Then G∧ is the set of all continuous
homeomorphisms of G into T and the dual group of G∧ can be identi-
fied with the original hypergroup G. Denote χ(x) by the value of the
homeomorphism χ ∈ G∧ at the point x ∈ G. A function g ∈ C(G×G∧)
is called a local inner product for G if g has the following properties :

(1) supx∈G supχ∈K |g(x, χ)| <∞ for all compact subset K of G∧.
(2) g(x, χ1χ2) = g(x, χ1) + g(x, χ2) and g(x−1, χ) = −g(x, χ) for

all x ∈ G, χ ∈ G∧.
(3) For every compact subset K of G∧ there is a neighborhood U

of the identity e such that χ(x) = exp[ig(x, χ)] holds for all
x ∈ U, χ ∈ K.

(4) For every compact subset K of G∧, limx→e supχ∈K g(x, χ) = 0.
The sequence {µn}n≥1 of probability measures on G is said to converge
weakly to the probability measure µ on G as n → ∞ if, for every
bounded continuous function f : G→ R,∫

G

f(x)µn(dx) →
∫

G

f(x)µ(dx) as n→∞ .
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We will define the characteristic function µ̂ of the probability measure
µ by its Fourier transformation µ̂ defined on G∧ as following : for all
χ ∈ G∧,

µ̂(χ) =
∫

G

χ(x)µ(dx) .

Definition 1. A triangular array {µn,j : j = 1, 2, · · · , kn;n =
1, 2 · · · } of probability measures on G is called uniformly infinitesimal
if

lim
n→∞

sup
1≤j≤kn

µn,j(U c) = 0

for every neighborhood U of e in G, or equivalently, if

lim
n→∞

sup
1≤j≤kn

|1− µ̂n,j(χ)| = 0

for every χ ∈ G∧ where U c is the complement of U and U is assumed
to be measurable.

The triangular array

{Xn,j : j = 1, 2, · · · , kn;n = 1, 2 · · · }

of G-valued random variables is said to be uniformly infinitesimal if
the triangular array

{µn,j : j = 1, 2, · · · , kn;n = 1, 2 · · · }

of probability measures on G is uniformly infinitesimal, where µn,j is
the distribution of Xn,j . Then for any µ ∈M1(G) and fixed local inner
product g on G×G∧, the function

y 7→ exp
[
i

∫
G

g(x, χ)µ(dx)
]

is a continuous homeomorphism of G∧ into T and so is an element of
the dual group of G∧. Therefore, by the Pontryagin duality theorem,
there is a fixed point x0 of G such that for all χ ∈ G∧

χ(x0) = exp
[
i

∫
G

g(x, χ)µ(dx)
]
.
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Now let τ be the continuous homeomorphism t 7→ eit from R into T.
Then µ ∈ M1(T) is called a normal distribution if µ = τ(νa,σ2) for
some a ∈ R, σ ∈ R+ and νa,σ2 ∈ M1(G). In fact, measure µ(B) of a
set B can be computed as

µ(B) =
∫

B

∞∑
n=1

1√
2πσ

exp
[
− 1

2σ2
(u− a+ 2nπ)2

]
du

and notes that µ is normal if and only if µ̂(k) = exp[iak− (σk)2/2] for
all k ∈ Z.

Definition 2. Let G be a hypergroup. A measure µ ∈ M1(G) is
called a Gauss measure in the sense of Parthasarathy if

(1) µ ∈ I0(G).
(2) For any factorization of µ of the form µ = exp(τ) ∗ λ one has

τ = aεe for some positive number a,

where τ is a positive bounded measure on G and λ ∈ I0(G), I0(G)
denotes the collection of all weakly infinitely divisible measures in
M1(G). And the class of Gauss measure in M1(G) will be abbreviated
by RP (G).

The class I0(G) is a sequentially closed subsemigroup of M1(G).
From this point we will use the notation exp(ν) = exp(ν − ‖ν‖εe) for
any measure ν ∈ M1(G). Then one can have the following proper-
ties(see [1]).

Lemma 1. For any µ ∈ I0(G) the following statements are equiva-
lent:

(1) µ has a nontrivial idempotent factor,
(2) there is a χ0 ∈ G∧ with µ̂(χ0) = 0.

Lemma 2. Let (νn)n≥1 be a sequence in M b
+(G) and (µn)n≥1 the

sequence of Poisson measures µn := exp(νn) for n = 1, 2, · · · . We
assume that
(a) (µn)n≥1 is shift compact,
(b) any limit point µ of any sequence of shifts of (µn)n≥1 does not
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admit an idempotent factor.
Then

(1) For any neighborhood U of the identity e of G the restricted
sequence (1G\Uνn)n≥1 is relatively compact

(2) For all χ ∈ G∧ we have supn≥1

∫
(1− Reχ(x))νn(dx) <∞.

2. Two results

Theorem 1. For every µ ∈ RP (G) there are unique element x0 ∈ G
and a positive quadratic form φ such that for all χ ∈ G∧, µ̂(χ) =
χ(x0) exp(−φ(χ)) holds.

Proof. For µ ∈ RP (G) and n ≥ 1 there exist µn ∈ M1(G) and
xn ∈ G such that µ = µn

n ∗ εxn . Then we can assume, without loss
of generality, that limn→∞ µn = εe holds. Hence the family {µn,j :
j = 1, · · · , n;n ≥ 1} with µn,j := µn for all j = 1, 2, · · · , n is an
infinitesimal triangular system in M1(G). For every n ≥ 1 we define
yn ∈ G by

χ(yn) := exp
[
−i
∫

G

g(x, χ)µn(dx)
]

for all χ ∈ G∧ where g is a local inner product for G, and αn :=
µn ∗εyn , βn := exp(αn), λn := βn

n ∗εy−n
n

. One notes that accumulation
points of shifts of {µn

n : n ≥ 1} differ only by shifts of µ. Therefore no
accumulation point of any shift of {µn

n : n ≥ 1} admits an idempotent
factor. So, the following relation holds : for any compact subset K of
G∧,

lim
n→∞

sup
χ∈K

|(λn ∗ εxn
)∧(χ)− µ̂(χ)| = 0 .

In particular, for every χ ∈ G∧

|µ̂(χ)| = lim
n→∞

|(λn ∗ εxn)∧(χ)|

= lim
n→∞

exp
[
n

∫
(Reχ(x)− 1)αn(dx)

]
.

The real-valued function φ on G∧ defined by

φ(χ) := lim
n→∞

n

∫
(1− Reχ(x))αn(dx) for all χ ∈ G∧
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is a positive quadratic form on G∧. In fact, for every n ≥ 1 we define
measures τn := nαn ∈ M b

+(G) such that exp(τn) is a shift of λn ∗ εxn

for n ≥ 1. Then
lim

n→∞
λn ∗ εxn

= µ,

and so the sequence (exp(τn))n≥1 is shift compact and the sequence
(1Uc · τn)n≥1 of restrictions of τn is relatively compact for every neigh-
borhood U of e by Lemma 2. Hence for any accumulation point
τ = limn→∞ 1Uc ·τn of the sequence (1Uc ·τn)n≥1 there is an α ∈ I0(G)
such that µ = exp(τ)∗α holds. And by assumption we have τ = ‖τ‖εe.
Without loss generality we assume that limn→∞ 1Uc · τn = ‖τ‖εe. Let
now f be a bounded continuous function on G such that f(U c) = 1
and f(e) = 0. Then

‖τ‖ = lim
n→∞

(1Uc · τn)(G)

= lim
n→∞

(1Uc · τn)(f)

= ‖τ‖f(e) = 0 .

Hence for all χ ∈ G∧,

(2) φ(χ) = lim
n→∞

∫
U

(1− Reχ(x))τn(dx)

whenever U is a neighborhood of e and Reχ(x) denotes the real part
of χ(x). The power series expansion of the cosine function cos θ, 0 ≤
θ ≤ 2π, together with the continuity of characters of G implies that for
every ε > 0 and all χ1, χ2 ∈ G∧ there is a neighborhood U of e such
that

2(1− ε)[(1− Reχ1(x)) + (1− Reχ2(x))]

≤(1− Re(χ1χ2)(x)) + (1− Re(χ1χ
−1
2 )(x))

≤2(1 + ε)[(1− Reχ1(x)) + (1− Reχ2(x))] .

holds for all x ∈ U . Integration over U with respect to τn, for all n ≥ 1,
and passage to the limit as n→∞ yields

2(1− ε)(φ(χ1) + φ(χ2)) ≤ φ(χ1χ2) + φ(χ1χ
−1
2 )

≤ 2(1 + ε)(φ(χ1) + φ(χ2)) .
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Since ε is arbitrary,

φ(χ1χ2) + φ(χ1χ
−1
2 ) = 2(φ(χ1) + φ(χ2(x))

for all χ1, χ2 ∈ G∧. Hence that φ is a positive quadratic form on G∧,
so −φ = log |µ̂| for φ. Since µ ∈ RP (G) does not admit an idempotent
factor, ψ := µ̂/|µ̂| is in (G∧)∧, and by Pontryagin’s duality theorem
there is an x0 ∈ G with ψ(χ) = χ(x0) for all χ ∈ G∧ and therefore the
desired result. First of all we note that for any neighborhood U of e
and χ1, χ2 ∈ G∧ the following relation holds :

ψ(χ1χ2)
ψ(χ1)ψ(χ2)

= lim
n→∞

exp
∫

U

[Imχ1χ2(x)− Imχ1(x)− Imχ2(x)]τn(dx)

where Imχ(x) denotes the imaginary part of χ(x). It remains to be
proved that the right side of this equation is 0. In fact, we can obtain
the following inequality

|Imχ1χ2(x)− Imχ1(x)− Imχ2(x)|
≤|Imχ1(x)| · |1− Reχ2(x)|+ |Imχ2(x)| · |1− Reχ1(x)|

for any x ∈ G and χ1, χ2 ∈ G∧. Furthermore, Lemma 2 implies that
for all χ ∈ G∧ the condition

sup
n≥1

∫
(1− Reχ(x))τn(dx) <∞

holds. Now choosing a neighborhood U of e such that |Imχ1(x)| and
|Imχ2(x)| are smaller than ε > 0, for all x ∈ U one obtains∣∣∣∣∫

U

[Imχ1χ2(x)− Imχ1(x)− Imχ2(x)]τn(dx)
∣∣∣∣ ≤ 2cε

where c = supn≥1

∫
(1 − Reχ(x))τn(dx) depends on only χ and does

not depend on n. Thus the right-hand side of (2) is equal to unity for
ε is arbitrary. On the other hand, the uniqueness of x0 ∈ G and φ on
G∧ in the representation

µ̂(χ) = ψ(χ)|µ̂(χ)| = χ(x0) exp(−φ(χ))

valid for χ ∈ G∧. �



238 Lee, Jae Won and Park, Sung Wook

Theorem 2. Let x0 ∈ G and φ be a positive quadratic form on
G∧. Then there exists a measure µ ∈ RP (G) such that for all χ ∈ G∧

µ̂(χ) = χ(x0) exp(−φ(χ))

holds.

Proof. We first show that for x0 ∈ G and a positive quadratic form
φ on G∧ there is a measure µ ∈ I0(G) such that the desired rep-
resentation holds. To show this it suffices to establish the negative
definiteness of φ, because that if φ is negative definite then exp(−φ)
is positive definite. Thus by Bochner’s theorem there exists a measure
ν ∈ M1(G) with the property ν̂ = exp(−φ). Since for n ≥ 1 one also
has a positive quadratic form (1/n)φ, there is a measure νn ∈ M1(G)
with ν̂n = exp(−(1/n)φ) and therefore ν̂ = (ν̂n)n = (νn

n)∧. Thus
µ = εx0 ∗ ν ∈ I0(G) and ν is an infinitely divisible measure on G such
that

µ̂(χ) = ε̂x0(χ)ν̂(χ)

= χ(x0) exp(−φ(χ))

for all χ ∈ G∧ holds. Concerning the negative definiteness of φ we
must show that for every n ≥ 1, χi ∈ G∧, i = 1, · · · , n and complex
numbers ci, i = 1, · · · , n, we have

n∑
i,j=1

cic̄j(φ(χi) + φ(χj)− φ(χiχ
−1
j )) ≥ 0 .

Defining a real function ψ on Zn by

ψ(m) := φ

(
n∑

i=1

miχi

)

for all m := (m1, · · · ,mn) ∈ Zn, one immediately verifies that

ψ(u+ v) + ψ(u− v) = 2(ψ(u) + ψ(v))
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for all u, v ∈ Zn. So, there is a unique continuous, positive symmetric
bilinear function Ψ : Zn ×Zn → R with Ψ(u, u) = ψ(u) for all u ∈ Zn

which is uniquely determined by the matrix

A := (Ψ(ei, ej))i,j=1,··· ,n

with ei := (0, · · · , 1, 0, · · · , 0) ∈ Zn for all i = 1, · · · , n and 1 is the ith
component of ei and it can be extended to a bilinear form Ψ̃ on Rn for
which

Ψ̃(ζu, ζu) = ζ2Ψ̃(u, u)

= ζ2Ψ(u, u)

= ζ2ψ(u) ≥ 0

holds whenever ζ ∈ R and u ∈ Zn. Writing

D := {x ∈ Rn : x = ζu for ζ ∈ R and u ∈ Zn }

then we have Ψ̃(z, z) ≥ 0 for all z ∈ D and thus this inequality holds
for all z ∈ Rn because of denseness of D in Rn. This implies that Ψ̃ is
a positive bilinear form on Rn. As φ is a positive definite form on G∧,
one obtains the following equalities : for all i, j = 1, · · · , n

φ(χi) + φ(χj)− φ(χiχ
−1
j ) = ψ(ei) + ψ(ej)− ψ(eie

−1
j )

= Ψ(ei, ei) + Ψ(ej , ej)−Ψ(eie
−1
j , eie

−1
j )

= 2Ψ(ei, ej) = 2Ψ̃(ei, ej)

and therefore
n∑

i,j=1

cic̄j(φ(χi) + φ(χj)− φ(χiχ
−1
j )) =

n∑
i,j=1

cic̄jΨ̃(ei, ej)

= 2Ψ

(
n∑

i=1

ciei,
n∑

i=1

ciei

)
≥ 0 .

For every τ ∈M b
+(G) and χ1, χ2 ∈ G∧ one has

− log | exp(τ)∧(χ1χ2)| − log | exp(τ)∧(χ1χ
−1
2 )|

≤2(− log | exp(τ)∧(χ1)| − log | exp(τ)∧(χ2)|) .(3)
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This relation follows from the inequality

1− cos(θ1 + θ2) ≤ (1− cos θ1) + (1− cos θ2), 0 ≤ θ1, θ2 ≤ 2π .

In fact, we have

log | exp(τ)∧(χ)| =
∫

(Reχ(x)− 1)τ(dx)

for all χ ∈ G∧ and consequently,

− log | exp(τ)∧(χ1χ2)| − log | exp(τ)∧(χ1χ
−1
2 )|

=2
∫

(1− Reχ1(x)Reχ2(x))τ(dx) .

Thus, from the above inequality, we obtain

2
∫

G

(1− Reχ1(x)Reχ2(x))τ(dx)

≤2(− log | exp(τ)∧(χ1)| − log | exp(τ)∧(χ2)|)

for all χ1, χ2 ∈ G∧. Moreover, given any measure τ ∈M b
+(G) we have

the inequality

(4) |τ̂(1)− τ̂(χ)|2 ≤ 2τ̂(1)[τ̂(1)− Reτ̂(χ)]

valid for all χ ∈ G∧. From this inequality (4) it follows that for all
χ ∈ G∧ ∫

(1− Reχ(x))τ(dx) = 0

implies τ̂(χ) = τ̂(1) = ‖τ‖ and hence τ = ‖τ‖εe. It remains to be
shown that µ = exp(τ) ∗ λ with τ ∈ M b

+(G) and λ ∈ I0(G) implies
that τ = ‖τ‖εe. Let τ0 ∈M b

+(G) and λ ∈ I0(G) with µ = exp(τ0) ∗ λ.
Since µ̂ admits no zero by Lemma 1, λ̂ does not either, so that λ admits
no idempotent factor. Hence λ is the limit of a sequence of shifts of
measures exp(τ) with τ ∈ M b

+(G). It follows from the inequality (3)
that for all χ1, χ2 ∈ G∧ one has

− log |λ̂(χ1χ2)| − log |λ̂(χ1χ
−1
2 )|

≤2(− log |λ̂(χ1)| − log |λ̂(χ2)|) .
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Addition of this inequality to the inequality (3) yields

φ(χ1χ2) + φ(χ1χ
−1
2 ) ≤ 2(φ(χ1) + φ(χ2))

for all χ1, χ2 ∈ G∧. Since φ is a positive quadratic form, we obtain
equality in (3) if τ is replaced by τ0. Since

| exp(τ0)∧(χ)| =
∫

(1− Reχ(x))τ0(dx)

for all χ ∈ G∧, we have∫
(1− Reχ1χ2(x) + 1− Reχ1χ

−1
2 (x))τ0(dx)

=2
∫

G

(1− Reχ1(x) + 1− Reχ2(x))τ0(dx) ,

for each χ1, χ2 ∈ G∧ and therefore∫
(1− Reχ1(x))(1− Reχ2(x))τ0(dx) = 0

for all χ1, χ2 ∈ G∧. If one choose χ2 := χ1, inequality (4) implies that
τ0 = ‖τ0‖εe, so that τ0 is degenerate at the identity of G which is the
desired result. �

Our Result. From Theorem 1 and Theorem 2, we can obtain the
following result : For any complex valued function f on G∧ the follow-
ing statements are equivalent

(1) There is a µ ∈ RP (G) such that f = µ̂.
(2) There is an x0 ∈ G and a positive quadratic form φ on G∧ such

that f(χ) = χ(x0) exp(−φ(χ)) for all χ ∈ G∧.
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